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Introduction: The young, complex surface of 

Europa fascinated many in planetary science and 

astrobiology communities for the last half-century, with 

intriguing observations generating speculation that 

underneath its icy surface, there exists a warm liquid 

ocean with the potential ingredients for life [1]. One 

extremely interesting geological feature on Europa is 

`chaos' terrain: areas resembling jigsaw puzzles, where 

broken ice blocks have separated, reoriented, and frozen 

again from past disruptions in the moon’s subsurface 

[2]. It is thought the distance to the subterranean ocean 

may be smaller in these chaos regions, making them 

favorable sites for future spacecraft to land and access. 

Upcoming missions (e.g. ESA JUpiter Icy Moons 

Explorer (JUICE) [3], NASA Europa Clipper [4]) will 

provide additional insightful, high-quality data. 

Significant efforts to catalog chaos terrain on Europa by 

hand [5]; however, mapping locations and orientations 

of individual ice blocks by human eye is time-

consuming and subjective. Therefore, developing 

methods to automate this processes going forward is 

crucial. In this context, we investigate using Deep 

Learning methods, specifically a Mask Region-based 

Convolutional Neural Network (Mask R-CNN) [6], to 

automate detection and segmentation of ice blocks in 

chaos regions with images from Galileo. We also 

explore the advantages and challenges of using the 

Mask R-CNN model for this particular instance 

segmentation task. The proposed approach aims to 

provide methods for accurately identifying geological 

features and aid in planning for future Europa and other 

planetary missions, and further build a framework for 

Machine Learning in planetary science.  

Methodology: Expanding upon work by Gansler et 

al. (2021), which used an altered U-Net [7] framework 

for the same task [8], we instead explore using the 

computationally-efficient and straightforward Mask R-

CNN model, chosen for its ability to generalize well on 

other image data. We initially focus on training the 

model on chaos regions identified by Leonard et al. 

(2022) as having large, “platy” ice blocks, as we expect 

it to generalize better on these than areas containing 

small and/or irregular blocks. True labels are determined 

by geoscientist Alyssa Mills using the procedure from 

Leonard et al. (2022). To evaluate model performance, 

we calculate the Intersection over Union (IoU) metric 

for images, measuring overlap between predicted and 

ground truth ice block bounding boxes. The most 

significant challenges hindering model performance are 

innate to input data; though Galileo imagery of Europa 

chaos terrain is still the best to date, it has low spatial 

resolution, varying solar illumination, and is relatively 

small for Deep Learning purposes. We attempt to 

overcome this by implementing a technique known as 

Transfer Learning and trying various optimization 

techniques (e.g. data augmentation). 

Results: We compare model performance to that of 

Gansler et al. (2021), achieving a moderate improvement in 

IoU score from 0.286 to 0.53 (see Fig. 1) [8]. Additional 

methods are currently being tested to further improve this. 
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Figure 1: Example of true and predicted labels, current best IoU score. 
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