
Data Poisoning and Leakage Analysis 1

in Federated Learning 2

Wenqi Wei, Tiansheng Huang, Zachary Yahn, Anoop Singhal, 3

Margaret Loper, and Ling Liu 4

1 Introduction 5

Federated learning (FL) [46] enables collaborative model training over a large 6

corpus of decentralized data residing on a distributed population of edge clients. 7

All clients can keep their sensitive data private and only share local model updates 8

with the federated server. 9

Training data manipulation and training data privacy intrusion are two dominat- 10

ing threats in federated learning. Despite the default privacy by keeping client data 11

local, recent studies [3, 21, 28, 79, 83, 86, 94, 95, 100, 101] have shown that training 12

data leakage (usually referred to as gradient inversion or gradient leakage) intrudes 13

client privacy because each contributing client shares its local training parameter 14

updates (in the form of weights or gradients) with the server. By gaining access to 15

such raw gradient information, an adversary can effectively reconstruct the private 16

client training data by reverse engineering based on the gradients from each client 17

at each round. In the meantime, many have exploited training data manipulation in 18

federated learning in the form of data poisoning attacks. Data poisoning attacks 19

W. Wei (�)
Georgia Institute of Technology, School of Computer Science, Atlanta, GA, USA

Fordham University, Bronx, NY, USA
e-mail: wwei23@fordham.edu

T. Huang · Z. Yahn · L. Liu
Georgia Institute of Technology, School of Computer Science, Atlanta, GA, USA

A. Singhal
National Institute of Standards and Technology, Gaithersburg, MD, USA

M. Loper
Georgia Tech Research Institute, Atlanta, GA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. T. Thai et al. (eds.), Handbook of Trustworthy Federated Learning, Springer
Optimization and Its Applications 213,
https://doi.org/10.1007/978-3-031-58923-2_3

 885 47436 a 885 47436 a

mailto:wwei23@fordham.edu
mailto:wwei23@fordham.edu
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3
https://doi.org/10.1007/978-3-031-58923-2_3

W. Wei et al.

can have two different attack objectives [8, 17, 25, 61, 71, 99] on the trained 20

global model: (i) denial-of-service (DoS) attack such that federated training fails 21

to converge to a point with reasonable accuracy and (ii) targeted attack such that 22

erroneous decisions will be made only to those manipulated inputs while keeping 23

high test accuracy on the objects of the rest. 24

Existing research against training data privacy intrusion relies on model pertur- 25

bation by adding randomized noise to sanitize the raw gradients before sharing 26

them with the server [83, 84, 101]. A key challenge for privacy protection by 27

model perturbation is finding a scalable approach to determining the right amount 28

of noise to sanitize the raw gradients while meeting the two seemingly conflicting 29

optimization goals: The noise injected should be just enough to prevent gradient 30

leakage inference, and yet not too much such that the negative effect on both 31

convergence and accuracy of federated learning is minimized. Meanwhile, model 32

perturbation is also leveraged for poisoning mitigation [7, 45, 55, 67, 76]. Similarly, 33

it is difficult to determine the injected perturbation with the maximal mitigation on 34

the attack effect and yet minimal negative impact on the unaltered queries. 35

With the increasing concerns about the data privacy and poisoning threats in 36

federated learning, we attempt to bridge research gaps by (1) uncovering the 37

circumstances and conditions that lead to detrimental effects from training data 38

privacy intrusion and training data manipulation and (2) identifying the enabler and 39

limitations of privacy protection and security assurance strategies based on model 40

perturbation in federated learning. 41

To achieve these objectives, we reveal the truths and pitfalls of understanding 42

two dominating threats: data privacy intrusion and training data manipulation. First, 43

we formulate the training data leakage attacks regarding the intrinsic relationship 44

between the training examples and their gradients. We show how adversaries can 45

reconstruct the private local training data by simply analyzing the shared parameter 46

update from local training (e.g., local gradient or weight update vector). We then 47

present three observations on training data privacy leakage regarding the access 48

of the training model, the informative gradients in early training, and the effect of 49

model perturbation with constant noise. We compare alternative model perturbation 50

methods, such as gradient compression, random noise injection, and differential 51

privacy noise, concerning the proper amount and location of perturbation against 52

training data privacy leakage. Second, we formulate training data manipulation 53

attacks with targeted attack goals, which aim to cause the trained global model 54

in federated learning only to misclassify the input from a specific victim class or 55

with a specific pattern (trigger) into some designated malicious behavior. Then we 56

demonstrate three observations on model access in poisoning attacks, poisoning 57

effectiveness in terms of attack entry point, and the corresponding flaw of model 58

perturbation with constant noise injection against training data manipulation. We 59

analyze alternative defense approaches against training data manipulation for their 60

mitigation effect and limitations. For both training data privacy intrusion and 61

training data manipulation, we demonstrated the feasibility of best balancing privacy 62

protection, poisoning resilience, and model performance with dynamic model 63

perturbation, using dynamic differential privacy noise as the example. At last, we 64

Data Poisoning and Leakage Analysis in Federated Learning

study additional risk factors of federated learning including, data skewness and mis- 65

information. These threats exist in all learning-based systems, and their occurrence 66

in federated learning also poses security challenges to its usability. Our analytical 67

study with strong empirical evidence provides transformative enlightenment on 68

effective privacy protection and security assurance strategies in federated learning, 69

while in compliance with those trustworthy AI guidelines, such as the NIST’s AI 70

Risk Management Framework [68]. 71

2 Federated Learning Preliminary 72

In federated learning, the machine learning task is decoupled from the centralized 73

server to a set of N client nodes. Given the unstable client availability, for each round 74

of federated learning, only a small subset of .Kt clients out of all N participants will 75

be chosen to participate in the joint learning. 76

Local Training at a Client Upon notification of being selected at round t , a 77

client will download the global state .w(t) from the server, perform a local training 78

computation on its local dataset and the global state, i.e., .wk(t + 1) = wk(t) − 79

η∇wk(t), where .wk(t) is the local model parameter update at round t and .∇w is the 80

gradient of the trainable network parameters. Before sharing, clients can decide its 81

training batch size .Bt and the number of local iterations. 82

Update Aggregation at Federated Learning Server Upon receiving the local 83

updates from all .Kt clients, the server incorporates them and updates the global state 84

and initiates the next round of federated learning. Given that local updates can be 85

in the form of either gradient or model weight updates, thus two update aggregation 86

implementations are the most representative: 87

Distributed SGD At each round, each of the .Kt clients trains the local model with 88

the local data and uploads the local gradients to the federated learning server. The 89

server iteratively aggregates the local gradients from all .Kt clients into the global 90

model and checks if the convergence condition of federated learning task is met. If 91

not, the server starts the next iteration round [41, 42, 92, 93]. 92

.w(t + 1) = w(t) − η
∑Kt

k=1

nk

n
∇wk(t),

where .η is the global learning rate and .
nk

n
is the weight of client k. Here we adopt 93

the same notation as in reference [46] so that .nk is the number of data points at client 94

k and n indicates the amount of total data from all participating clients at round t . 95

Figure 1 provides a system overview of federated learning with distributed SGD. 96

Federated Averaging At each round, each of the .Kt clients uploads the local 97

training parameter update to the federated learning server. The server iteratively 98

performs a weighted average of the received weight parameters to update the 99

W. Wei et al.

Fig. 1 Federated learning schema

global model and starts the next iteration round .t + 1 unless it reaches the 100

convergence [7, 46]. 101

.w(t + 1) =
∑Kt

k=1

nk

n
wk(t + 1).

Let .�wk(t) denote the difference between the model parameter update before the 102

local training and the model parameter update after the training for client k. Below 103

is a variant of this method [23]: 104

.w(t + 1) = w(t) +
∑Kt

k=1

nk

n
�wk(t).

3 Data Leakage and Privacy Protection 105

3.1 Threat Model 106

Training data privacy leakage is a major threat to client privacy in federated 107

learning [21, 28, 79, 83, 94, 95, 100, 101]. The early attempt [3] brought theoretical 108

insights by showing provable reconstruction feasibility on a single neuron or single- 109

layer networks. Then follows the work of [21, 83, 101], [101] show the effectiveness 110

of inverting gradients via pixel-level reconstruction to expose client training data 111

by jointly optimizing the label and data from the dummy data to match target 112

gradients. [83] showed that a patterned randomized attack seed can lead to a highly 113

efficient reconstruction process in attack timing and attack effectiveness compared 114

to the random seed. [21] demonstrated that the attack can succeed on deeper 115

models and larger datasets with Adam optimizer. [94] propose the group consistency 116

Data Poisoning and Leakage Analysis in Federated Learning

regularization framework that makes the gradient leakage attack on a large batch of 117

data at ImageNet level possible. 118

The occurrence of training data privacy leakage in federated learning relies on 119

several assumptions. On the data side, data at rest and data in network transit 120

are encrypted and secure. This also implies the attackers cannot gain access to 121

the training data prior to feeding the decrypted training data to the deep learning 122

algorithm during local training. Therefore, the main attack surface is during data-in- 123

use either at the client’s local training or at the server’s global aggregation. Training 124

data privacy leakage usually assumes semi-curious adversary [21, 83, 101], which 125

means the adversary may launch training data inference to reconstruct the private 126

client training data based solely on the shared gradient updates contributed by the 127

client. 128

Given the two levels of stochastic gradient descent (SGD)-based optimizations 129

in producing a global federated model, which are server-side aggregation using 130

FedSGD or FedAveraging and client-side training with SGD, unauthorized infer- 131

ence to gradient updates can happen at two possible attack surfaces. At the server 132

side, prior to performing global aggregation of local model updates at the round t , 133

the adversary may collect gradient updates from any or all of the .kt participating 134

clients and perform unauthorized reconstruction inference by model inversion, 135

resulting in uncovering the sensitive local training data used to produce the local 136

model update (gradients). In the rest of the chapter, we refer to such attacks as 137

training data leakage at server aggregation. The adversary can also launch the 138

training data leakage attack at a compromised client on two different gradients: (i) 139

the accumulated per-client gradients upon completing the local model training and 140

before encrypting it for sharing with the federated learning server or (ii) the single- 141

step per-example gradient during each iteration of the local model training prior to 142

performing the local SGD. Given that the former exploits the per-client gradient 143

updates similar to the training data leakage at server aggregation, we focus on the 144

latter and refer to such client-side attack as training data leakage at client SGD. 145

3.2 Training Data Privacy Leakage Formulation 146

Regardless of the specific attack implementation, the attack goal of training data 147

privacy leakage is to reconstruct the private training data from the knowledge 148

of gradients and federated learning model. Algorithm 1 gives a sketch of the 149

training data privacy leakage from gradients. The attack configures and executes 150

the reconstruction process in six steps. Concretely, (1) the adversary obtains the 151

gradient update .∇xf from the federated training process. (2) The attack algorithm 152

.A : Zx → xrec starts with a dummy seed .x0
rec with the same resolution (or attribute 153

structure for text) as the training data. (3) The dummy attack seed is fed into the 154

client’s local model. (4) The gradient .∇xrecf of the dummy attack seed is obtained 155

by backpropagation. Since the local training update toward the ground-truth label 156

of the training input data should be the most aggressive compared to other labels, 157

W. Wei et al.

Algorithm 1: Gradient-based reconstruction attack
Input: training function f : x → Zx ; ∇xf : stolen gradients; INIT (x.init): attack

initialization seed; T: attack termination condition; η′ learning rate of attack
optimization

// Attack procedure:
1 x0

rec ← INIT(x.init)

2 yrec ← arg maxk(||∇xf ||2)
3 for τ in T do
4 ∇xτ

rec
f ← f (xτ

rec)

5 Dτ ← ||∇xτ
rec

f − ∇xf ||2
6 xτ+1

rec ← xτ
rec − η′ ∂Dτ

∂xτ
rec

7 end
8 Output: reconstructed training data xrec

the sign of gradient for the ground-truth label of the private training data will be 158

different than other classes and its absolute value is usually the largest. Therefore, 159

we can infer the label information from the class-wise gradient. (5) Given the 160

gradient of the dummy data, the gradient loss is computed using a vector distance 161

loss function, e.g., .L2, between the gradient .∇xrecf of the attack seed and the 162

actual gradient .∇xf from the client’s local training. (6) The dummy attack seed 163

is modified iteratively by the attack reconstruction learning algorithm. It aims to 164

minimize the vector distance loss .Dτ by a loss optimizer such that the gradients 165

of the reconstructed seed .xi
rec(t) at round i will be closer to the actual gradient 166

updates stolen from the client upon the completion (training data leakage at server 167

aggregation) or during the local training (training data leakage at client SGD). When 168

the .L2 distance between the gradients of the attack reconstructed data and the actual 169

gradient from the private training data is minimized, the reconstructed attack data 170

from the dummy seed converges to the private local training data, leading to the 171

training data privacy leakage. This attack reconstruction iterates until it reaches the 172

attack termination condition (.τ), typically defined by the maximum attack iteration 173

or a specific loss threshold. If the reconstruction loss is smaller than the specified 174

distance threshold, the training data leakage attack is considered successful. 175

Given the attack process, training data privacy leakage can be formulated as a 176

reconstruction learning procedure .A : Zx → xrec, where .Zx denotes the leaked 177

gradient corresponding to private training data x with the following attack objective: 178

. arg minxrec ||∇xrecf − Zx ||2. (1)

The optimization goal is to iteratively modify .xrec by minimizing the distance 179

between the gradient of the reconstructed input .∇xrecf and the leaked gradient value 180

.Zx : .||x − xrec||2 ≈ 0. Such that the reconstructed input .xrec gradually becomes 181

identifiably close to the private training data x and eventually exposes the training 182

example x with high confidence as they become almost identical: .xrec ≈ x. Figure 2 183

provides a visualization by three examples of Fashion-MNIST [88], CIFAR10 [36], 184

and LFW [29] under training data leakage at client SGD. 185

Data Poisoning and Leakage Analysis in Federated Learning

Fig. 2 Reconstructive-based training data leakage attack at client SGD

For training data leakage at server aggregation, the leaked gradient of client i is 186

the accumulated result after the local training over the local training set X at round 187

t , denoted by .ZX. The reconstruction attack is to reverse engineer one of the private 188

training examples in X with .xrec. 189

. arg minxrec ||∇xrecf − ZX||2. (2)

Using different initial seeds, the same reconstruction inference attack algorithm can 190

leak multiple private training data in X such that .∃x∈X||x − xrec||2 ≈ 0. 191

From the attack formulation and process, we make two interesting observations. 192

First, multiple factors in the attack method could impact the attack performance 193

of the training data privacy leakage, such as the dummy data initialization, the 194

attack iteration termination condition, the selection of the gradient loss function, 195

and the attack optimization method. For example, the bootstrapping initialization 196

seeds significantly impact the attack stability, namely the reconstruction quality 197

and convergence guarantee of the attack optimization, and attack cost, which is 198

the number of attack iterations to succeed the reconstruction. Figure 3 provides 199

a visualization of ten different initialization methods and their impact on the 200

training data leakage attack in terms of reconstruction quality and convergence 201

speed: random initialization seed, patterned initialization with 1/4 division and 202

1/16 division, patterned initialization with binary color of 0 and 1, patterned 203

initialization with RGB colors, and initialization seed with another image from the 204

same class. Figure 3 shows that all geometric initializations can outperform random 205

initialization with faster attack convergence and better reconstruction quality. 206

Second, the configuration of some hyperparameters in federated learning may 207

also impact the effectiveness and cost of the training data privacy leakage, including 208

batch size and training data resolution. For example, the early gradient leakage 209

attack algorithm in [101] uses separate weights and submodels for each training 210

example (batch size of one) in order to show the reconstruction inference by reverse 211

engineering and can succeed in the attack on the batch size of up to 8. The loss- 212

function optimized attack algorithm in [21] shows the feasibility of an arbitrarily 213

W. Wei et al.

Fig. 3 Attack convergence of CIFAR100 under different initialization seeds. (a) Structural
similarity index measure (SSIM [80]). (b) Mean squared error

Fig. 4 Effect of batch size in training data leakage at client SGD on LFW. Example from [81]

large batch of training data, e.g., a batch size of 100. By comparison, [83] show 214

that when the input data examples in a batch belong to only one or two classes, 215

which is often the case for mobile devices and the non-i.i.d. distribution of the 216

training data [97], the training data leakage attacks can effectively reconstruct the 217

training data of the entire batch, e.g., a batch size of 16 when the dataset has low 218

interclass variation, e.g., face and digit recognition. Figure 4 shows the visualization 219

of training data leakage at client SGD on the LFW dataset with four different batch 220

sizes. We refer the readers to [83] for a comprehensive study on the influencing 221

factors of training data privacy leakage. Choosing appropriate settings for these 222

influencing factors can significantly impact attack effectiveness and cost. 223

It is also worth noting to understand the difference of the attack reconstruction 224

learning from the standard deep neural network training. In the latter, it takes as the 225

training input both the fixed data–label pairs and the initialization of the learnable 226

model parameters and iteratively updates the model parameters with gradients until 227

the training converges. The learning process minimizes the loss with respect to the 228

ground-truth labels. In contrast, training data leakage attacks perform reconstruction 229

Data Poisoning and Leakage Analysis in Federated Learning

attacks by taking a dummy attack seed input, a fixed set of model parameters, such 230

as the actual gradient updates of a client local training, and the gradient derived label 231

as the reconstructed label .yrec, and its attack algorithm will iteratively reconstruct 232

the local training data used to generate the gradient, .∇wk(t), by updating the 233

dummy synthesized seed data, following the attack iteration termination condition 234

.T, denoted by .{x0
rec, x

1
rec, ...xs

T} ∈ R
d , such that the loss between the gradient of 235

the reconstructed data .xi
rec and the actual gradient .∇wk(t) is minimized. Here .x0

rec 236

denotes the initial dummy seed. If both the input query and the model are frozen, 237

the federated model is used for label inference during deployment. 238

3.3 Observations on the Training Data Leakage Attacks 239

In this section, we speak out the untold truth about training data leakage attacks in 240

terms of the access of the training model, the informative gradients in early training, 241

and the effect of model perturbation with constant noise. 242

3.3.1 Observation 1: Training Model Access 243

Our first observation on the training data privacy leakage is the implicit assumption 244

that the adversary has the access to the local training model and can run the same 245

training model for launching the iterative reconstruction-based inference attack. In 246

other words, the adversaries have to access the training models used in federated 247

learning to generate gradients from the initialization of dummy gradients during 248

iterative attack optimization. 249

The necessity of access to the training model implies that the model leakage 250

leads to the training data leakage. For the honest-but-curious server, the access to 251

the training model is natural, and the server could collect gradient updates from 252

every participating client, performing training data leakage attack at the FL server 253

prior to aggregation. For adversary proxy at participating clients, even with the 254

assumption that the adversary cannot access the encrypted data at rest, the training 255

data privacy leakage remains feasible, assuming the attacker can gain access to the 256

training model for reconstruction of private training data, for example, by running 257

the same training model over the attack dummy seed (dummy initialization) against 258

the stolen gradients. 259

For horizontal and vertical federated learning in which the clients do not share 260

the gradient update with each other, training data leakage at client SGD can only 261

reveal training data from the client where the adversary proxy resides. However, 262

training data leakage at client SGD can disclose training data from those clients who 263

share the gradients update to the adversary client in the peer-to-peer-based federated 264

learning [81]. 265

W. Wei et al.

The observation also implies that training data leakage attack is rather difficult in 266

the black-box setting. Suppose the adversary is unable to perform backpropagation 267

on the training model. In that case, the attack optimization will not be able to update 268

the dummy seed for its gradient converging to the stolen gradient. Although it is 269

possible to find models whose gradients can approximate the gradient generated 270

by the training model [4], the nonlinearity of deep learning models can lead to 271

significant visual differences between the reconstructed instances and the private 272

training data even when the approximated gradients are close to the stolen ones. 273

3.3.2 Observation 2: Impact of Attack Timing 274

Our second observation is that the stolen gradients at earlier training rounds of 275

federated learning are more informative under the training data leakage attacks. 276

The ability to reconstruct the private training data is much weaker on the gradient 277

updates stolen from the later training rounds. 278

We attribute the phenomenon to the inherent logic of gradient descent. As 279

federated learning progresses in rounds, the global model becomes more and more 280

complex. The corresponding gradient generated on seen examples will demonstrate 281

a decaying trend converging to 0. Figure 5 illustrates the effect of training data 282

leakage attack after 1, 3, 5, 7, 9 local iterations. From this set of experiments, we 283

observe that if the local model update can only be shared after the local training 284

is performed over a certain number of iterations, then we can effectively reduce 285

the probability of leaking the private training data at client even if the raw gradient 286

updates are shared with the FL server. 287

Fig. 5 Impact of training after several local training iterations. Example from [81]

Data Poisoning and Leakage Analysis in Federated Learning

3.3.3 Observation 3: Effect of Model Perturbation with Constant Noise 288

To protect gradient updates from training data leakage attacks, a common practice 289

is refraining the participating clients from sharing their local model updates in 290

raw format. Our third observation is that it is challenging to determine the proper 291

amount of model perturbation to use. Existing model perturbation methods tend to 292

use a constant perturbation strategy for ensuring training data privacy protection. 293

Considering the different effectiveness of training data leakage at early and later 294

rounds of federated learning, on one hand, using the constant amount of randomized 295

noise for model perturbation may not be most effective to defend against training 296

data leakage attacks. For example, at early rounds, such constant noise injection 297

may be unnecessary, especially in later training rounds. On the other hand, by 298

injecting excessive noise to a local model at later rounds may incur adverse effects 299

on both accuracy and convergence of the global model. Therefore, adequate model 300

perturbation should be employed to best balance the model performance and privacy 301

protection. 302

3.4 Privacy Protection with Dynamic Perturbation 303

Existing model (gradient) perturbation methods for protecting training data privacy 304

all adopt a straightforward data perturbation strategy by defining and adding a 305

constant noise to all data at all time, such as gradient compression, randomized 306

noise addition using Gaussian distribution, and differential privacy controlled noise 307

injection. Consider conventional differential privacy (DP) parameters, such as using 308

constant clipping bound to approximate sensitivity of the stochastic gradient descent 309

(SGD) for Deep Neural Network (DNN) models using SGD optimizer [57]. Hence, 310

a constant perturbation strategy is employed by most of the conventional DP algo- 311

rithms. In the context of federated learning, to the best of our knowledge, [82, 84] 312

are the first to inject dynamically generated randomized DP noise to sanitize the 313

local model update prior to sharing with the federated aggregation server. 314

Gradient compression [41] sorts the gradients to be shared by a client and 315

sends only the gradient coordinates whose magnitude is larger than a threshold. The 316

approach removes the essential information needed for reconstruction [66, 83, 101]. 317

Gaussian noise addition is another way to sanitize the raw gradients. A larger 318

noise injection will alter the raw gradients more but may also hurt the model 319

accuracy of federated learning. 320

Figure 6 illustrates gradient compression and Gaussian noise addition by exam- 321

ple. We observe that under a low compression ratio of 10%, the gradient sanitization 322

will have a low negative effect on the accuracy of federated but is vulnerable to 323

training data leakage attacks. With a high compression ratio of 90%, we can gain 324

training data privacy protection at the cost of decreased accuracy. Similarly, when 325

choosing the small Gaussian variance threshold, the gradient sanitization fails to be 326

resilient to training data leakage attacks. With a large Gaussian variance threshold, 327

W. Wei et al.

Fig. 6 Gradient compression and Gaussian noise addition are hard to scale against training data
privacy leakage

we gain leakage resilience at the cost of significant accuracy loss, from 0.695 with 328

raw gradient to 0.344 under noisy gradient. We argue that (i) privacy protection 329

with model perturbation may still intrude client privacy if insufficient perturbation 330

is injected and (ii) it is hard to set a universal threshold for all models and all training 331

tasks. Figure 6 shows the importance of choosing the appropriate model perturbation 332

by balancing between leakage resilience and yet the minimal negative effect on the 333

convergence and accuracy of federated learning. 334

Fixed Differential Privacy noise is considered in conventional approaches to 335

differentially private federated learning [23, 47, 84]. The noise is added either 336

to the per-client model updates to protect against training data leakage at server 337

aggregation [23, 47] or to the per-example local gradients to protect against both 338

training data leakage at server aggregation and client SGD [84]. We refer the 339

readers to the corresponding paper on the concrete implementation and differential 340

privacy analysis of these differentially private federated learning approaches. Unlike 341

Gaussian noise addition, differential privacy noise is controlled by differential 342

privacy parameters .(ε, δ), and the .l2 norm of the gradient is capped by a predefined 343

clipping bound for sensitivity control: .N(0, σ 2S2
I) is injected, where the clipping 344

bound C approximates the sensitivity S, and .σ is the predefined fixed noise scale. .I 345

denotes the size of the noise reflecting the number of gradient coordinates. 346

Using a fixed clipping bound C to define the sensitivity of gradient changes for all 347

iterations can be problematic, especially for the later iterations of training since the 348

fixed clipping bound C to define sensitivity S can be a very loose approximation 349

of the actual .l2 sensitivity S: .S >> C. With a fixed sensitivity S and noise 350

scale .σ , the Gaussian noise with variance .N(0, σ 2S2) will result in injecting a 351

fixed amount of differential privacy noise throughout iterative federated learning. 352

Injecting such excessively large constant noise to gradients in each iteration of 353

the training may have a detrimental effect on the accuracy performance and slow 354

down the convergence of training. Sadly, it does not gain any additional privacy 355

protection because the accumulated privacy spending .ε is only inversely correlated 356

with .σ [82, 85]. 357

Similar to the gradient compression and Gaussian noise addition, deciding 358

how much perturbation to add for training data leakage prevention and model 359

utility is difficult. Insufficient noise injected may maintain high model accuracy 360

Data Poisoning and Leakage Analysis in Federated Learning

but fail to protect the model from training data privacy leakage. By comparison, 361

excessive noise could prevent training data privacy leakage but at the cost of model 362

performance. 363

Given that gradients at early training iterations tend to leak more information than 364

gradients in the later stage of the training [83], it will be more effective to design 365

a differential privacy algorithm with the amount of noise adaptive to the trend of 366

gradient updates: injecting larger noise in early rounds and adding smaller noise to 367

gradients in the later rounds during federated training. Given that the noise variance 368

.ς is the product of sensitivity S and noise scale .σ , several possible strategies can be 369

promising, such as having the sensitivity calibrated to the .l2 norm of the gradients, 370

or having a smoothly decaying noise scale such that the noise variance follows the 371

trend of gradient updates across the entire training process. 372

Dynamic Differential Privacy noise considers dynamic differential privacy 373

parameters. We introduce dynamic sensitivity S defined by .l2-max of gradients 374

and dynamic noise scale. The former strictly aligns to the gradient’s .l2 norm and 375

keeps track of the .l2 sensitivity of the local training model. Specifically, we promote 376

to use the max .l2 norm of the per-example gradient in a batch as the sensitivity. 377

By definition [16], the sensitivity of a differentially private function is defined as 378

the maximum amount that the function value varies when a single input entry is 379

changed. The definition indicates that the actual sensitivity of the function may vary 380

for different input batches when performing local training at each client at each 381

round t of federated learning. Therefore, the .l2-max computed after clipping reflects 382

more accurately the actual sensitivity of the local training function by following the 383

sensitivity definition. Figure 7a shows the decaying trend of gradient updates in .l2 384

norm (blue curve), averaged over the participating clients at each round, as federated 385

learning progresses in the number of rounds. This .l2-max sensitivity is dependent 386

on the local training function. Hence, this .l2-max sensitivity is adaptive with respect 387

to every local iteration, every client, and every round [82, 85]. 388

Fig. 7 Decaying trend of the .l2 norm of gradient update in nonprivate federated learning and
differentially private with fixed and dynamic differential privacy noise. Total clients .N = 100
and participating clients .Kt/N = 10% on Fashion-MNIST. (a) Vanilla federated learning. (b)
Differentially private federated learning

W. Wei et al.

Consider two scenarios: (i) When the .l2 norm of all per-example gradients in a 389

batch is smaller than the predefined clipping bound C, then the clipping bound C 390

is undesirably a loose estimation of the sensitivity of training function under any 391

given local iteration, client, and round. The max .l2 norm among the corresponding 392

per-example gradients over the entire batch for iteration is, in fact, a tight estimation 393

of sensitivity for noise injection. Instead if we define the sensitivity of the training 394

function by the max .l2 norm among these per-example gradients in the batch, we 395

will correct the problems in the above scenario. (ii) When any of the per-example 396

gradients in a batch is larger than the clipping bound, the sensitivity of the training 397

function is set to C. In summary, the .l2-max sensitivity will take whichever is 398

smaller of the max .l2 norm and the clipping bound C. Figure 7b compares the 399

fixed clipping-based sensitivity and using the .l2-max norm of the gradient to define 400

the sensitivity S. When the .l2 norm of the per-example gradients in a batch is 401

smaller than the fixed clipping bound C, using the clipping bound C is a poor and 402

undesirably loose approximation of the true .l2 sensitivity S regardless of whether 403

to set C.=4 or C.=8. Using fixed DP parameters to define gradient perturbation may 404

lead to excessive noise injection and result in accuracy loss.AQ1 405

Dynamic noise scale with a decaying policy is an alternative approach to 406

supporting dynamic differential privacy noise variance over the federated training 407

process. This is because the differential privacy noise variance .ς consists of both 408

the sensitivity and noise scale. Dynamic noise scale can be implemented using 409

a smooth decay function over the number of rounds in federated learning with 410

different adaptive policies such as linear decay, staircase decay, exponential decay, 411

and cyclic decay [85]. Each will progressively decrease the noise scale .σ as the 412

number of rounds for federated learning increases. While we want to construct 413

dynamic differential privacy noise, determining noise scale .σt will need to take 414

the following three factors into consideration: (1) The starting noise scale .σ0 415

needs to be large enough to prevent gradient leakages. Note that general accuracy- 416

driven privacy parameter search cannot always guarantee training data leakage 417

resilience. Therefore, we select the privacy parameter settings proven empirically 418

to be resilient [84] for the initial setting. (2) The ending noise scale .σT cannot 419

be too small; otherwise the .ε privacy spending would explode, resulting in poor 420

differential privacy protection [81]. (3) The amount of noise injected is yet not too 421

much to affect the desired accuracy performance of the global model. 422

Table 1 shows the comparison of fixed and dynamic model perturbation with 423

differential privacy noise. We consider fixed differential privacy parameters: .C = 4, 424

.σ = 6 as in [2, 84], and dynamic differential privacy parameters with .l2-max sen- 425

sitivity S and dynamic noise scale exponentially decaying from .
⌈

C∗σ
S

⌉
to .σT = 3. 426

MSE measurement is the larger, the less similar between the reconstructed instances 427

and private training data, with 0.4 as the threshold for successful reconstruction. The 428

accuracy is measured at the round as in Table 2. By combining .l2-max sensitivity 429

and dynamic noise scale, we are able to inject a larger noise at early rounds and a 430

smaller noise at later rounds due to that the descending trend of .l2-max sensitivity 431

results in the declining differential privacy noise variance as the training progresses. 432

Data Poisoning and Leakage Analysis in Federated Learning

Table 1 Comparison of fixed and dynamic model perturbation with differential privacy noise

MNIST Fashion-MNIST CIFAR10 LFW

No perturbation Accuracy 0.980 0.861 0.674 0.695

MSE 0.014 0.014 0.123 0.174

Fixed perturbation Accuracy 0.956 0.826 0.633 0.649

MSE 4.95 4.92 2.77 2.79

Dynamic perturbation Accuracy 0.977 0.854 0.642 0.683
MSE 5.03 5.06 2.89 2.86

Table 2 Benchmark datasets and parameters

MNIST Fashion-MNIST CIFAR10 LFW

training data 60000 50000 2267

validation data 0000 10000 756

features 28*28 32*32*3 32*32*3

classes 10 10 62

data/client 500 400 300

local iteration L 100 100 100

Local batch size B 5 4 3

rounds T 100 100 60

Vanilla accuracy 0.980 0.861 0.674 0.695

Fig. 8 Convergence and .ε

spending accumulation of our
methods with fixed and
dynamic privacy parameters
on MNIST

We also measure the impact of model perturbation by fixed and dynamic 433

differential privacy noise on .ε privacy spending and model convergence of federated 434

learning. Following [2], we track .ε spending using Rényi differential privacy [50] 435

with a fixed .δ = 1e − 5. Figure 8 provides a visualization of comparing the loss 436

over the global training rounds (x-axis) of federated learning for model perturbation 437

by fixed differential privacy noise (blue) and dynamic differential privacy noise 438

(orange), showing both guarantee the convergence, with fixed .ε spending (gray 439

curve) and dynamic .ε spending (yellow curve). 440

W. Wei et al.

3.5 Other Privacy Concerns in Federated Learning 441

3.5.1 Training Data Leakage Attacks Under Privacy-Enhancing Tools 442

The protection power of privacy-enhancing tools for securing data-in-use against 443

privacy leakages varies depending on the attack surface. Secure multiparty com- 444

putation (SMPC) is a cryptographic technique for enhancing privacy in multiparty 445

communication and computation systems, such as securing per-client local model 446

updates sharing with a remote and possibly untrusted aggregation server in fed- 447

erated learning systems [11, 52]. Hence, SMPC offers strong robustness against 448

training data leakage at server aggregation, while having minimal impact on the 449

accuracy of the global model. However, the main bottleneck of SMPC is the high 450

communication cost. Also, SMPC may not secure the training data leakage at 451

client SGD since the local SGD is performed on raw gradients of all examples in 452

each minibatch per local iteration. Both homomorphic encryption (HE) and Trusted 453

Execution Environment (TEE) are cryptographically capable of preventing training 454

data inference attacks at client and at server in federated learning, as long as server 455

and clients can support TEE or HE [51], respectively. For instance, in addition to 456

running the aggregation server in TEE, each client can install TEE and ensure that 457

both the local model training and local training data are hosted in the TEE enclave. 458

However, enabling HE and TEE at both server and every client at global aggregation 459

and every local SGD requires nontrivial cost, especially at edge clients with limited 460

resources. 461

3.5.2 Other Privacy Intrusion Attacks Under Privacy-Enhancing Tools 462

Other known privacy intrusion attacks in federated learning include membership 463

inference [32, 44, 54, 59, 64, 74], attribute inference [49], and model inversion 464

attacks [19, 34, 65], which can be launched at both client and the federated server 465

and cause more adverse and detrimental effects when combined with the gradient 466

leakage attacks. Given that the discussion on the latter two attacks is rather limited, 467

we will focus on the membership inference attacks. 468

Membership inference attack aims to infer whether a test data sample is a 469

member of the training set based on the prediction result produced by a pretrained 470

model during model deployment [64]. Membership inference attack on the trained 471

federated learning model is the same as in the centralized setting. However, 472

membership inference attack can also happen during the federated learning process 473

as the training data are geographically distributed across a population of clients [74]. 474

[49] introduce the first gradient-based membership inference attack in federated 475

learning. The authors show that the nonzero gradients of the embedding layer of 476

a recurrent neural networks model trained on text data can reveal which words are 477

in the training batches of the honest participants. A possible explanation is that the 478

embedding is updated only with the words that appear in the batch, and the gradients 479

of the other words are zeros. [54] temper with the federated training process and 480

Data Poisoning and Leakage Analysis in Federated Learning

intentionally update the local model parameters to increase the loss on the target 481

data record. If the target data record is a member of the training set, applying 482

gradient ascent on the record will trigger the model to minimize the loss of this 483

record by gradient descent, whose sharpness and magnitude are much higher than 484

performing gradient ascent on data records that are not members of the training 485

set. Different proposals have been put forward for enhancing robustness against 486

membership inference, including differential privacy [74], prediction confidence 487

masking [14, 26, 35], regularization [43, 53], dropout [37, 59], model compres- 488

sion [78], knowledge distillation [58, 62] that have been proposed to alleviate the 489

membership inference attack. However, these techniques can provide only limited 490

robustness against the membership inference, for example, by lowering its attack 491

success rate by 20% .∼ 30%, and none can eliminate the privacy threat completely 492

or at a high defense success rate [73]. Also, given that membership inference attacks 493

during the federated training process, privacy-enhancing techniques such as HE and 494

TEE cannot protect the private training data from the attack until it is inside the 495

enclave. 496

4 Data Poisoning and Security Assurance 497

4.1 Threat Model 498

Poisoning attacks during the federated training assume malicious clients and can 499

be performed on data or model. Data poisoning attack occurs during local data 500

collection and has two types: 1) clean label [61] and 2) dirty label [25]. Clean-label 501

attacks inject training examples that are cleanly labeled by a certified authority. 502

Imperceptible adversarial watermarks are injected to the clean input to form a 503

poisoning instance with a clean label but simultaneously minimize the .l2 distance 504

of the input to the target instance. In contrast, dirty-label poisoning deletes, inserts, 505

or replaces training examples with the desired target label into the training set. One 506

example of dirty-label poisoning attack is backdoor poisoning [25], in which the 507

adversary inserts small regions of the original training data and modifies the label as 508

the desired target class to embed the trigger into the model. In this way, the unaltered 509

input will not be affected, and the input with the trigger will behave according 510

to the adversary’s objective [7, 67, 70, 76]. Another example is the label-flipping 511

attack [9, 20, 71], which flips some source victim class to another designated target 512

class, while the features of the data are kept unchanged. Model poisoning attack 513

happens during the local model training process, aiming to poison local model 514

updates before sending them to the server. Since data poisoning attacks eventually 515

change a subset of updates sent to the model at any given round, model poisoning is 516

believed to subsume data poisoning in federated learning settings [8]. 517

Depending on the attacker’s objective, poisoning attacks can be either: a) denial- 518

of-service random attacks or b) stealthy targeted attacks. The former aims to reduce 519

W. Wei et al.

the accuracy of the federated learning model, whereas the latter seeks to degrade the 520

performance of a particular source class (victim) or induce the federated learning 521

model to output the target label specified by the adversary while keeping high test 522

accuracy on the rest of the classes. Targeted attack is considered more difficult than 523

random attacks as the attacker has a specific goal to achieve but is more motivated 524

since the attacker can manipulate the model for its adverse goal. Accordingly, the 525

main focus of our study is on the targeted data poisoning attacks: targeted dirty-label 526

poisoning, backdoor attacks, and clean-label attacks. These attacks assume that each 527

malicious client can only manipulate the training data .Xi with auxiliary information 528

such as the target label on their own device but cannot access or manipulate 529

other participants’ data. These attacks corrupt training data with different tactics 530

but remain the learning procedure, e.g., SGD, loss function, or server aggregation 531

unaltered. These attacks are not specific to any deep neural network architecture, 532

loss function, or optimization function. Also, these attacks are stealthy as they 533

succeed in dropping the prediction accuracy of the manipulated input, and yet the 534

poisoning attack has little negative impact on the accuracy of the rest of the queries. 535

4.2 Training Data Poisoning Attack Formulation 536

4.2.1 Targeted Dirty-Label Poisoning 537

Targeted dirty-label poisoning corrupts training data with label change [71]. Let 538

.F(x) denote the global model being trained in federated learning, .fi(x) be the local 539

model of client i, and .(x, y) denote the raw data and its ground-truth label in the 540

training set of client i. The objective of the poisoning attack .ρ is to replace the 541

ground-truth label y with .y′ to mislead the joint training so that the global model 542

produced by federated learning can be fooled. The global model will mispredict 543

examples of source class y to target class .y′ with high confidence, formally: 544

.ρ : ρ(x, y) = (x, y′)

s.t. fi(x) = y′, y′ �= y, max[F(x) = y′].

The objective of the targeted dirty-label poisoning attack is to maximize the chance 545

of the global model F(x) to misclassify the test examples of the source class, by 546

poisoning the training data of the source class on those of compromised clients. 547

4.2.2 Backdoor Poisoning 548

Compared to the targeted dirty-label poisoning, backdoor attackers corrupt training 549

data by injecting triggers such that input queries with the trigger will misbehave, 550

while the input queries without the trigger will act normally [7, 67, 76, 89]. With .δx 551

as the trigger and .x′ = x + δx, we can formulate backdoor poisoning as 552

Data Poisoning and Leakage Analysis in Federated Learning

.ρ : ρ(x, y) = (x′, y′)

s.t. fi(x
′) = y′, y′ �= y, max[F(x′) = y′].

The objective of the backdoor poisoning is to maximize the chance of the global 553

model F(x) to misclassify the test examples with the trigger, by inserting triggers to 554

the training data on those compromised clients. 555

4.2.3 Clean-Label Poisoning 556

Unlike dirty-label and backdoor poisoning, clean-label poisoning attacks add 557

another layer of inputs to the original inputs such that injected features overtake 558

the original features [22, 31, 61, 99]. Clean-label poisoning uses the gradient-based 559

procedure to optimize how the training examples are poisoned to prevent detection. 560

Let .x∗ be the input from the target class and .x′ = x + βx∗, where .β is commonly 561

set smaller than 0.5, and we can formulate clean-label poisoning as 562

.ρ : ρ(x, y) = (x′, y)

s.t. fi(x
′) = y′, y′ �= y, max[F(x′) = y′].

The objective of the clean-label poisoning is to maximize the chance of the global 563

model F(x) to misclassify the test examples embedded with inputs from another 564

class. The resulting model will make decisions based on the injected features on the 565

top instead of the original features. 566

To increase poisoning data participation for more severe poisoning effect in 567

federated learning, one straightforward approach is to engage with more com- 568

promised clients. Namely, the percentage (.λ) of compromised clients is large. 569

However, poisoning attackers typically assume a percentage of comprised clients, 570

e.g., 5%, 10%, or 20% of the total N participating clients to avoid outlier detection. 571

In this case, the number of poisoned local training data examples is limited. To 572

make effective poisoning attacks, strategic adversaries may purposely increase the 573

participation of these compromised clients [71]. For example, some distributed 574

learning services require a stable power supply and fast WiFi connectivity [10]. 575

Attackers can thus make themselves always available at times when insufficient 576

honest participants are available, so that malicious clients have a higher probability 577

of being selected by the federated learning server during each round of the joint 578

training. In other words, while the percentage (.λ) of comprised clients is small, the 579

.α chance that the gradient update collected by the server is from a malicious client 580

is large. 581

W. Wei et al.

4.3 Observations on the Training Data Poisoning Attacks 582

In this section, we first uncover the unspoken fact of training data poisoning attacks 583

in terms of model access, attack timing, and other key factors that impact on 584

poisoning effectiveness. Then we discuss the myth and the effect of employing the 585

DP model perturbation as a method to mitigate the training data poisoning attacks. 586

4.3.1 Observation 1: Training Data Access 587

Based on our extensive experiments on substantial collection of existing data 588

poisoning attack methods, we observe that to launch a data poisoning attack, be 589

it dirty label or clean label, the baseline assumption is that the adversary has the 590

access to the training data hosted privately at local clients. This indicates that the 591

data poisoning attacks do not need to directly modify the model, as suggested in [8], 592

and instead the adversary is assumed to have access to the local training data on 593

the compromised client and hence can access the training data at run time, even 594

though the training data at rest is encrypted. As a result, adversaries can directly 595

and strategically poison the ground-truth data, such as flipping the label or adding 596

backdoor triggers only to the training examples of some victim class, while keeping 597

the remaining of the training data untouched [81]. In most of the data poisoning 598

attacks, the adversary may have zero knowledge about the DNN model structure 599

and its hyperparameter settings when the model trojan attack is simply to poison the 600

target data of victim class by flipping the ground-truth label or injecting backdoor 601

trigger to misguide the prediction input query into the targeted poisoning trap, such 602

as changing the prediction from correct source class to an attack target class through 603

targeted poisoning using dirty label or backdoor trigger. In the backdoor trigger case, 604

the same backdoor trigger (patch) once planned into the prediction query input, it 605

will result in misguiding a well-trained DNN model to deliver a wrong prediction 606

(either targeted or untargeted attack). 607

It is worth to note that most of the data poisoning attacks are targeted. First, 608

attackers only selectively poison some or all training data of a chosen victim class 609

while keeping the rest of the classes untouched. To perform targeted poisoning 610

by either injecting backdoor or modifying ground truth, the attackers are assumed 611

to have the access to the targeted training data and can read and manipulate 612

these training data. Hence, encryption at rest cannot prevent such poisoning risks. 613

However, DNN model training directly on encrypted data is still in its infancy 614

and remains an important research problem for AI security, especially in federated 615

learning environments. 616

4.3.2 Observation 2: Impact of Attack Timing 617

Our second observation is that while data poisoning attacks can occur at any iterative 618

round during the entire course of federated learning, and last for an arbitrary 619

Data Poisoning and Leakage Analysis in Federated Learning

Fig. 9 Different attack timing on CIFAR10 by poisoning the victim class (class 1) at availability
.α = 0.6, 0.7, 0.8, 0.9 and .λ = 10. Results from [81]. (a) Poisoning first 120 rounds. (b) Poisoning
last 60 rounds. (c) Attack timing in later rounds

number of rounds, the poisoning attacks are more effective at the later stage of 620

training compared to only performing poisoning in the early stage and stopping at 621

the midway [71]. We attribute the phenomenon to the catastrophic forgetting [24] 622

characteristics of deep learning models. When trained on one task, then trained on a 623

second task, deep learning models “forget” how to perform the first task. Figure 9a 624

demonstrates the attack effect of the early attackers who inject data poisoning for 625

the first 120 rounds for CIFAR10. Percentage .λ of comprised clients is set to 10%, 626

and the .α chance that the gradient update collected by the server is from a malicious 627

client is set to 60%, 70%, 80%, 90%. The results show that if the poisoning attacker 628

only gets involved at the early stage of training and then leaves for good, later 629

rounds of clean training would correct the altered poisoning effect. By comparison, 630

Figure 9b shows the results of late-stage attacks. The late-round attack is more 631

effective in degrading the performance of the victim class on the model to be 632

published at round 200 for CIFAR10. 633

There are some other worth noting empirical observations. For example, it 634

usually takes several rounds for the poisoning attack to be effective [81]. If the 635

attacker fails to perform sufficient rounds of poisoning attacks on a compromised 636

client, the poisoning effect on the local model update shared by this client to the 637

FL serve may not effectively hurt the aggregated global model, which is learned 638

from multiple rounds of distributed learning and multiple and possibly diverse 639

participating clients in each round. Therefore, engaging in the poisoning activity 640

but stopping too early or launching poisoning attack too late will both result in a 641

poor poisoning attack effect. Figure 9c shows that the repairing power of the benign 642

clients is not very strong, and the data poisoning would remain effective for longer 643

rounds, e.g., 30 rounds–50 rounds. 644

4.3.3 Observation 3: Model Perturbation with Constant Amount of Noise 645

There are several threads of efforts to mitigate risks of training data poisoning 646

attacks. One threat of existing solutions is to train a global model using a differen- 647

tially private federated learning approach. This requires to add a constant amount of 648

noise to local model/gradient update at each round. As a result, the use of perturbed 649

W. Wei et al.

local model update will cancel some adverse effects of data poisoning attack for both 650

the local gradients produced by compromised clients and the global model, which 651

is aggregated from noisy local model updates. To constrain the negative effect of 652

gradient perturbation performed at the honest/benign clients, we need to determine 653

the amount of noise to be used for model perturbation is not too much in order to 654

maintain the acceptable accuracy of the global model, and at the same time, we need 655

also to ensure that the amount of noise should be sufficient to mitigate/cancel the 656

effect of data poisoning. Seeking a good balance between poisoning resilience and 657

model accuracy is known to be a nontrivial technical challenge. 658

Given that most existing model perturbation approaches [7, 45, 55, 67, 76] 659

use the constant amount of randomized noises, such as model perturbation using 660

the conventional differential privacy controlled noise. However, we observe from 661

extensive empirical measurements that it is critical and yet challenging to determine 662

the proper amount of model perturbation to use at different rounds of federated 663

learning. First, the early rounds usually produce larger model gradient updates 664

compared to later rounds. By using a constant amount of random noise for model 665

perturbation, we may add too much (excessive) noise in later rounds, which 666

can negatively affect the accuracy and convergence of the global model because 667

gradients will become smaller as the federated training rounds are progressing. 668

Furthermore, the poisoning effects at early stage of the federated training tend 669

to be less effective compared to poisoning performed only in the later rounds 670

of federated learning. Hence, employing constant noise across all rounds of the 671

federated learning is not optimal for maintaining good performance of the global 672

model. This is especially true when the model perturbation is employed solely for 673

mitigating data poisoning effect. 674

To the best of our knowledge, there are little efforts to date that set forth for 675

developing model perturbation solutions for safeguarding federate learning against 676

both training data privacy leakage and training data poisoning threat. 677

4.4 Boosting Poisoning Resilience with Dynamic Model 678

Perturbation 679

Bearing the above discussion and analysis in mind, in this section we discuss 680

opportunities of employing dynamic model perturbation strategies. Unlike existing 681

model perturbation methods with a constant perturbation strategy, the dynamic 682

model perturbation methods will seek to find the appropriate model perturbation by 683

balancing between data poisoning mitigation and the minimal negative effect on the 684

convergence and accuracy of federated learning. In some sense, the dynamic model 685

perturbation for poisoning resilience shares some analogy to federated learning 686

with differential privacy. But they differ in at least one fundamental perspective. 687

Conventional differential privacy defines the constant amount but randomized noise 688

addition with the goal of ensuring that the noise is large enough under acceptable 689

Data Poisoning and Leakage Analysis in Federated Learning

Fig. 10 .L2 norm of benign
and poisoned gradient update.
Total clients N=100 and
participating clients .Kt/N =
10 .% on Fashion-MNIST.
Results from [81]

Fig. 11 Decoupling of
benign (yellow dot) and
poisoned (blue cross) gradient
update under data poisoning
attack. Measured with .λ =
10% when flipping source
class 1 to target class 9 of
CIFAR10

model accuracy loss (controlled by a user-defined privacy budget). Hence, the 690

level of privacy protection by differential privacy is defined by this privacy budget. 691

However, for poisoning resilient model perturbation we need to define the amount 692

of noise to add based on the poisoning mitigation effectiveness such that we can 693

remove or eliminate the poisoning effect while maintaining the acceptable model 694

accuracy loss. 695

Figure 10 shows the .l2 norm of the gradient update for both benign and poisoned 696

settings of federated learning. We argue that the more effective poisoning effect 697

at the later stage of training results in the larger gradients from unseen/less seen 698

poisoned update, while the benign gradient update converges to 0 due to gradient 699

descent. 700

To demonstrate the impact of model perturbation on the poisoning effect, we 701

resort to the gradient decoupling phenomenon [81] on the eigenvalues of the 702

covariance in the gradient update shared from the client to the server. Specifically, 703

the distribution of benign gradients from honest clients can be separable from 704

the distribution of poisoned gradients from compromised clients by performing 705

Principal Component Analysis (PCA) or clustering to the gradient updates at 706

the federated server [15, 71], as shown in Fig. 11. Figure 12a shows that model 707

perturbation with a small constant differential privacy noise has little impact on 708

the gradient decoupling with .λ = 10%. Figure 12b shows the measurement results 709

for a large constant differential privacy noise. The noisy gradients can cancel the 710

poisoning effect when only a small percentage of malicious clients is present. We 711

can interpret this phenomenon based on the output stability of DP [48], which states 712

that DP noise perturbation is an .eε−1 dominating strategy slightly deviated from the 713

mainstream direction of the gradient update. When the amount of malicious clients 714

is limited, differential privacy noise would bring the poisoned gradient direction 715

W. Wei et al.

Fig. 12 Gradient decoupling effect under differential privacy noise, measured in CIFAR10. (a)
.C = 0.1, σ = 0.1. (b) .C = 0.5, σ = 2

back to the right track. However, when the percentage of the malicious clients is 716

large, e.g., .λ > 50%, there is a high probability that the majority of the gradient 717

updates on the source class at some round(s) may be dominated by poisoned 718

contributions from malicious clients. 719

With the above empirical observations in mind, we conjecture that using the 720

dynamic model perturbation designed by our dynamic differential privacy opti- 721

mization outlined in Section 1.3.4 can be a viable solution [81]. Next, we show 722

how dynamic noise can be significantly more effective in mitigating data poisoning 723

attack than using the constant amount of noise as done in conventional differential 724

privacy methods [1]. Recall Section 1.3.4, we use the .l2-max sensitivity instead 725

of constant clipping bound to define the amount of random noise to be added for 726

model perturbation, and this allows dynamic DP noise to be computed based on 727

the gradient fluctuation in each round of federated learning. With a proper setting 728

of initial noise scale and corresponding noise variance, we measure the impact of 729

using dynamic DP-controlled noise in mitigating poisoning attacks and report the 730

result in Table 3. We make three observations: (1) With sufficiently large noise, 731

dynamic model perturbation is not only leakage-resilient (shown in Fig. 13) but 732

also offers good poisoning resilience under m = 5% and m = 10%. (2) With the 733

initial noise variance .Sdyn ∗ σ0 = 5, dynamic differential privacy noise leverages a 734

decaying noise variance that is large enough at early rounds for leakage resilience 735

and decreases by following the declining trend of .l2-max sensitivity as the number 736

of rounds increases. The early poisoning resilience comes from the output stability 737

that cancels the effect of the poisoned gradient. (3) At the later stage, the added 738

differential privacy noise for leakage resilience becomes smaller and may no longer 739

effectively cancel out the effect of the poisoned gradient. Combined with the PCA- 740

based gradient outlier removal mitigation, the poisoning resilience can be further 741

improved by 5–10% for all three datasets. 742

By analyzing the effectiveness of dynamic perturbations against both training 743

data poisoning and training data leakage attacks, we make the following remarks 744

for developing security strategies in federated learning to simultaneously mitigate 745

both security and privacy threats: 746

Data Poisoning and Leakage Analysis in Federated Learning

Table 3 Poisoning resilience of dynamic differential privacy noise measured in micro f1 score

Fig. 13 Leakage resilience of dynamic differential privacy noise

• Remark 1. From Fig. 10, we make two observations: First, the gradient effect 747

of poisoning attacks remains similar across all rounds of federated learning, 748

regardless of the attack timing of data poisoning. Second, the poisoned gradients 749

tend to be consistently larger than the benign gradients. This is one of the main 750

reasons that poisoning attack in the later half of the federated learning rounds 751

will have more detrimental effect on the victim class, compared to the poisoning 752

attacks performed only in the early rounds of federated learning (recall Fig. 9). 753

• Remark 2. Although gradient perturbation may help mitigate the poisoning 754

effect to some extent, it remains an open research question regarding how to 755

determine the right amount of model perturbation at each round of federated 756

learning. This is because on one hand we need to perturb the client model update 757

with sufficiently large noise to cancel the negative effect of poisoning, and on the 758

W. Wei et al.

other hand, we need to ensure the amount of noise used for model perturbation is 759

just enough and not too large in order to preserve the accuracy of global model. 760

Table 3 shows that while noise injection can partially remove the poisoning 761

effect, the accuracy of the nonvictim classes drops as well, even with dynamic 762

model perturbation method. 763

• Remark 3. The model perturbation method for poisoning mitigation must 764

assume that the percentage of malicious clients is small [45, 55]. This is 765

because the protection power of differential privacy controlled noise is an .eε − 1 766

dominating strategy slightly deviated from the mainstream direction of the 767

gradient update. 768

We argue that the security protection techniques for federated learning should 769

bear the above analysis and observations into consideration when determining the 770

right amount of noises to be used by the model perturbation. Strategic model 771

perturbation approaches, such as selective noise injection only on the largest 772

gradients, are one possibility to explore. 773

4.5 Categorization of Poisoning Mitigation Techniques 774

4.5.1 Server-Side Mitigation Techniques 775

Existing defense solutions against poisoning attacks rely on the assumption that 776

the federated server in distributed learning is trusted. Hence, the primary research 777

efforts are dedicated to detecting anomalies by separating poisoned and nonpoi- 778

soned contributions. Most existing poisoning defense solutions are based on the 779

detection of poisoned local model updates sent from the compromised clients. 780

Spatial Signature-Based Techniques Tolpegin et al. [71] propose to apply PCA 781

on the local model updates collected over multiple rounds for each class and produce 782

two distinct gradient clusters for each poisoned source class. One corresponds to 783

benign local model updates from honest clients, and the other corresponds to the 784

poisoned local model updates from compromised clients. Based on the assumption 785

that only a small percentage of participating clients are compromised, it considers 786

the smallest cluster of the two will be the poisoned gradients from compromised 787

clients. [39] score model updates from each remote client by measuring the 788

relative distribution over their neighbors using a kernel density estimation method 789

and distinguishing malicious and clean updates with a statistical threshold. [72] 790

perform spectral analysis with SVD to generate two clusters for backdoor poisoning 791

attacks. [27] utilize robust covariance estimation to amplify the spectral signature 792

of corrupted data for detection. [38] conduct spectral anomaly detection using 793

variational autoencoder with dynamic thresholds. [69] propose to decompose the 794

input image into its identity part and variation part to perform statistical analysis 795

on the distribution of the variation and utilize a likelihood-ratio test to analyze the 796

representations in each class to detect and remove the backdoor trigger. 797

Data Poisoning and Leakage Analysis in Federated Learning

Spatial-Temporal Signature-Based Techniques STDLens [15] is the first work 798

to identify the problem of treating the smaller cluster of the two as the poisoning 799

gradients (Trojan attacked local model updates). In addition to spatial signature 800

generated with PCA and k-means clustering over the local model updates collected 801

over multiple rounds for each class, STDLens introduces the temporal signature 802

as the second step dedicated to identify which of the two gradient clusters is the 803

poisoned gradients. Instead of removing the entire cluster of poisoning gradients, 804

STDLens identifies another technically challenging case where the PCA with K- 805

means fails to partition the gradients of a class from the participating clients of a 806

given round into two cleanly separated clusters. This is because simply removing the 807

cluster of poisoned gradients may result in removing benign gradients and honest 808

clients. STDLens addresses the problem of two overlapping clusters by employing 809

the .λ density analysis to filter out the uncertainty region around the overlapping 810

of the two clusters prior to executing the removal of poisoning gradients and the 811

corresponding clients who shared the poisoning gradients with the federated server. 812

It is worth noting that this chapter is the first to introduce three types of poisoning 813

attacks to DNN object detection models: poisoning object existence, poisoning 814

object bounding box by shuffling them over different locations of the input image, 815

and poisoning the label of the victim class. 816

Meta-Learning-Based Techniques Xu et al. [90] train a meta-classifier that 817

predicts whether a given target model is Trojaned due to data poisoning. Specifically, 818

the authors introduce a technique called jumbo learning that samples a set of 819

Trojaned models following a general distribution and offline learn a Generative 820

Adversarial Network (GAN)-based meta-classifier to determine whether a local 821

model is Trojaned. During online Trojan detection, the meta-learning method will 822

run at the server and evaluate every local model received by the server and reject 823

those models that are detected as Trojaned models before performing global model 824

aggregation. 825

Server-Side Validation Server-side validation either assumes that the federated 826

server has a clean validation dataset with benign (untainted) ground-truth labels 827

or assumes that the clients can cross-validate each other with no collusion. The 828

validation can be done every round or on selected rounds. [56] train a k-Nearest 829

Neighbors (kNN)-based distinction classifier with a validation dataset to filter out 830

the poisoned samples. [96] require the server to send local model updates from 831

some clients to other clients for cross-checking. [13] require the service provider to 832

collect a clean small training dataset and bootstrap the trust score for each client. 833

A local model update has a lower trust score if its direction deviates more from the 834

direction of the server model update. Then, the server normalizes the magnitudes 835

of the local model updates such that they lie in the same hyper-sphere as the server 836

model update in the vector space, thus limiting the impact of malicious local model 837

updates with large magnitudes. CONTRA [5] implement a cosine-similarity-based 838

measure to determine the credibility of local model parameters in each round and a 839

reputation scheme to dynamically promote or penalize individual clients based on 840

their per-round and historical contributions to the global model. Li et al. [40] find 841

W. Wei et al.

that the models can learn backdoored data much faster than learning with clean data. 842

Therefore, they introduce a gradient ascent-based anti-backdoor mechanism into the 843

standard training to help isolate low-loss backdoor examples in early training and 844

unlearn the backdoor correlation. 845

4.5.2 Neural Network Cleansing Techniques. 846

An alternative countermeasure against poisoning attacks is to perform neural 847

network cleansing, which sanitizes the model or its input to remove the poisoning 848

effect. 849

Input Sanitization For input sanitization, one example is to regularize the class 850

boundaries on the convex combinations of training data points [12]. By this means, 851

the small nonconvex regions are removed, which causes a poisoned data instance 852

being surrounded by (nonpoisoned) instances with different labels, and thereby 853

mitigating the effect of poisoning. Another study [75] finds that for an infected 854

model, it requires much smaller modifications on the input to cause misclassification 855

into the target label than into other uninfected labels. Therefore, they can iterate 856

through all labels of the model and determine if any label requires significantly 857

a smaller amount of modification to achieve misclassification. If a backdoor is 858

identified in the model, the proposed method can produce the trigger responsible 859

for the backdoor. Accordingly, a proactive filter can be built to detect and filter out 860

all adversarial inputs that activate backdoor-related neurons. 861

Model Sanitization In addition to model perturbation by adding randomized 862

noises, other methods for model sanitization share similar objectives, which is to 863

prune the dormant neurons to weaken the poisoning impact [60]. Li et al. [40] report 864

that the models can learn backdoored data much faster than learning with clean data. 865

Therefore, they introduce a gradient ascent-based anti-backdoor mechanism into the 866

standard training to help isolate low-loss backdoor examples in early training and 867

unlearn the backdoor correlation. Wu and Wang [87] show that model sanitization 868

can also be done after the model has been fully trained and poisoned. Based on the 869

observation that the poisoned neurons are easier to collapse after adding adversarial 870

noise on them, they formulate a min-max problem to alternatively optimize the 871

adversarial noise, which serves to expose the poisoned neurons, and the mask, which 872

serves to prune out the poisoned neurons. By pruning out the poisoned neurons as 873

indicated by the mask, the model is fully recovered from the backdoor behavior. 874

CLP [98] utilizes a similar idea of pruning, but they utilize a different criterion— 875

channel Lipschitz constant to identify the poisoned channel—and similarly remove 876

the suspected channels afterward. 877

Model Sanitization in Federated Learning Context We test CLP pruning [98] 878

on a poisoned model trained on centralized/federated learning procedure [30], 879

whose results are available in Fig. 14. As shown in the left figure, CLP pruning 880

may drastically decrease the benign accuracy when adopting a large pruning ratio, 881

Data Poisoning and Leakage Analysis in Federated Learning

Fig. 14 Properties of two models trained with centralized backdoor and federated backdoor. Left:
ASR and benign accuracy with CLP defense. Middle: Channel Lipschitz of the last convolutional
layer of two models. Right: L2 norm of last convolutional layer of two models

which is necessary to lower Attack Success Ratio (ASR) to a satisfied number. We 882

also see from the middle/right figure that for a federated backdoored model, the 883

Lipschitz constant and the L2 norm of different channels (parameters) do not show 884

substantially difference, which make it harder to identify the poisoned parameters 885

in a statistical way. This indicates that pure pruning defense may not work well in 886

federated learning context, and extra counter-measurement needs to be taken in the 887

training phase (e.g., isolation subspace training in [30]). 888

5 Other Risk Factors in Federated Learning 889

While most discussions on the security threats of federated learning today focus on 890

training data privacy intrusion and training data poisoning attacks, the distributed 891

nature of federated learning introduces additional security challenges. The lack of 892

centralized control makes it difficult to enforce stringent security measures on each 893

client (edge device). This opens doors to malicious participants to manipulate and 894

compromise the federated learning process and outcomes. 895

5.1 Data Skewness and Biases 896

Skewness measures the distortion of symmetric distribution in a dataset. Skewness 897

is a significant issue in federated learning because the distribution of data across 898

different devices or clients varies significantly. This imbalance in data distribution 899

can lead to biased and suboptimal model updates. For example, certain devices may 900

contribute disproportionately more or less data than others. Such skewed data can 901

result in models that are biased toward data-rich clients and perform poorly on data- 902

poor clients, ultimately compromising the overall performance and generalization 903

of the federated model. In the meantime, the disparity of the majority and minority 904

of classes in a skewed data distribution can be amplified by differential privacy 905

noise [6]. Addressing data skewness in federated learning is essential to ensure a 906

W. Wei et al.

fair representation of all clients’ data and to improve the collective model’s accuracy 907

and robustness. Strategies like balanced sampling, loss reweighting, and gradient 908

tuning [63, 77] are among the approaches to tackle this challenge and achieve more 909

balanced and reliable federated learning outcomes. 910

5.2 Misinformation 911

The issue of misinformation is another significant concern in federated learning, 912

especially in scenarios where data is sourced from multiple devices or clients. 913

Since federated learning involves training a global model using decentralized data, 914

there is a risk of including misinformation or malicious data from individual 915

clients. If even a single client contributes inaccurate or deliberately misleading 916

data, it can affect the overall model’s integrity and lead to false predictions and 917

compromised performance. In the meantime, biased result is also misinformation. 918

With biased data source, the federated learning could mislead the decision-making 919

with disparate outcome. Detecting and mitigating misinformation in federated 920

learning is challenging as they require effective mechanisms to validate the data and 921

ensure the trustworthiness of the clients’ contributions. Strategies like data filtering, 922

client reputation scoring, and robust aggregation methods are employed to address 923

this issue and safeguard the accuracy and reliability of the federated model. Ensuring 924

the integrity of the data in federated learning is crucial to prevent the propagation 925

of misinformation and to maintain the model’s credibility and effectiveness in real- 926

world applications. 927

5.3 AI Ethics 928

AI ethics play a crucial role in the context of federated learning, where data 929

from multiple sources is aggregated to train a global model. As federated learning 930

involves sensitive data from diverse clients, ethical considerations are paramount to 931

safeguard privacy, security, fairness, and transparency. Even though the well-trained 932

federated learning models can perform decision by strictly following the statistical 933

distribution of the training data, there is no guarantee on the corresponding negative 934

influence to the society. For example, due to high hospital costs, poor people may 935

refrain from seeking medical attention for certain serious illnesses, which could 936

lead AI to believe that such diseases do not exist in certain populations. This is 937

because relevant training data may also be absent [18]. Therefore, AI ethics involves 938

accountability for the actions of the global model and understanding its potential 939

impact on society. By adhering to ethical guidelines and promoting responsible 940

AI practices, federated learning should harness the power of collective intelligence 941

while upholding moral principles and social values. 942

Data Poisoning and Leakage Analysis in Federated Learning

5.4 Responsible and Equitable AI 943

Responsible and Equitable AI represent another important property in the context 944

of federated learning. Responsible AI can be achieved by ensuring privacy, security, 945

and trust in the context of federated learning. We have discussed privacy and security 946

issues in federated learning, and trust is another important and yet complex security 947

property. Trustworthiness in federated learning involved ethics, ability to mitigate 948

misinformation, biases, and the negative impact of data skewness. Furthermore, 949

equitable AI is another important trustworthiness property in federated learning. It 950

refers to the fairness of federated learning with respect to heterogeneous clients, 951

including those clients with insufficient computing resources to run full-size AI 952

models. One solution approach to ensuring equitable AI in federated learning 953

is to support federated learning with heterogeneous clients, allowing vertical 954

and horizontal partitioning of a global model, to enable clients with insufficient 955

computing resources to participate in (and benefit from) federated learning [33, 91]. 956

6 Conclusion 957

In this chapter, we revealed the truths and pitfalls of understanding two dominating 958

threats: training data privacy intrusion and training data poisoning attack. We 959

formulated the training data leakage attacks based on the intrinsic relationship 960

between the training examples and their gradients. We characterized the training 961

data poisoning attacks based on the attack goals and the poisoning mechanism. We 962

gave a brief overview of the representative defense methods proposed to date and 963

analyzed their pros and cons based on our empirical observations. We conjecture 964

that this study will provide a road map for researchers and practitioners engaging in 965

federated learning field to gain an in-depth understanding on privacy and security 966

threats in federated learning and effective privacy protection and security assurance 967

strategies with strong empirical enlightenment. 968

Acknowledgments This research is partially sponsored by the NSF CISE grants 2302720, 969

2312758, 2038029, an IBM faculty award, a grant from CISCO Edge AI program, and a GTRI 970

Graduate Student Fellowship. 971

Disclaimer Certain equipment, instruments, software, or materials are identified in this chapter 972

in order to specify the experimental procedure adequately. Such identification is not intended to 973

imply recommendation or endorsement of any product or service by NIST nor is it intended to 974

imply that the materials or equipment identified are necessarily the best available for the purpose. 975

W. Wei et al.

References 976

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., 977

Dean, J., Devin, et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed 978

systems (2016). arXiv preprint arXiv:1603.04467 979

2. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: 980

Deep learning with differential privacy. In: ACM SIGSAC Conference on Computer and 981

Communications Security, pp. 308–318 (2016) 982

3. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning via 983

additively homomorphic encryption. IEEE Trans. Inform. Forensics Secur. 13(5), 1333–1345 984

(2017) 985

4. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: 986

circumventing defenses to adversarial examples. In: International Conference on Machine 987

Learning, pp. 274–283. PMLR (2018) 988

5. Awan, S., Luo, B., Li, F.: Contra: defending against poisoning attacks in federated learning. 989

In: European Symposium on Research in Computer Security, pp. 455–475. Springer, Berlin 990

(2021) 991

6. Bagdasaryan, E., Poursaeed, O., Shmatikov, V.: Differential privacy has disparate impact 992

on model accuracy. In: International Conference on Neural Information Processing Systems 993

(2019) 994

7. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated 995

learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. 996

PMLR (2020) 997

8. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through 998

an adversarial lens. In: International Conference on Machine Learning, pp. 634–643. PMLR 999

(2019) 1000

9. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. In: 1001

International Conference on Machine Learning, pp. 1467–1474. PMLR (2012) 1002

10. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., 1003

Konečnỳ, J., Mazzocchi, S., McMahan, B., et al.: Towards federated learning at scale: system 1004

design. In: Machine Learning and Systems, pp. 374–388 (2019) 1005

11. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, 1006

D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving machine learning. 1007

In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 1008

(2017) 1009

12. Borgnia, E., Cherepanova, V., Fowl, L., Ghiasi, A., Geiping, J., Goldblum, M., Goldstein, 1010

T., Gupta, A.: Strong data augmentation sanitizes poisoning and backdoor attacks without 1011

an accuracy tradeoff. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, 1012

Speech and Signal Processing (ICASSP), pp. 3855–3859. IEEE, Piscataway (2021) 1013

13. Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: Byzantine-robust federated learning via trust 1014

bootstrapping. In: Network and Distributed Systems Security Symposium (2021) 1015

14. Choquette-Choo, C.A., Tramer, F., Carlini, N., Papernot, N.: Label-only membership infer- 1016

ence attacks. In: International conference on machine learning, pp 1964–1974. PMLR (2021) 1017

15. Chow, K.-H., Liu, L., Wei, W., Ilhan, F., Wu, Y.: Stdlens: model hijacking-resilient federated 1018

learning for object detection. In: IEEE/CVF Conference on Computer Vision and Pattern 1019

Recognition, pp. 16343–16351 (2023) 1020

16. Dwork, C., Smith, A.: Differential privacy for statistics: what we know and what we want to 1021

learn. J. Privacy Confidentiality 1(2) (2010) 1022

17. Fang, M., Cao, X., Jia, J., Gong, N.: Local model poisoning attacks to byzantine-robust 1023

federated learning. In: USENIX Security Symposium, pp. 1605–1622 (2020) 1024

18. Flores, M., Dayan, I., Roth, H., Zhong, A., Harouni, A., Gentili, A., Abidin, A., Liu, A., Costa, 1025

A., Wood, et al.: Federated learning used for predicting outcomes in SARS-COV-2 patients. 1026

Research Square (2021) 1027

Data Poisoning and Leakage Analysis in Federated Learning

19. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence 1028

information and basic countermeasures. In: ACM SIGSAC Conference on Computer and 1029

Communications Security, pp. 1322–1333 (2015) 1030

20. Fung, C., Yoon, C.J., Beschastnikh, I.: The limitations of federated learning in sybil settings. 1031

In: USENIX Symposium on Research in Attacks, Intrusions and Defenses, pp. 301–316 1032

(2020) 1033

21. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients - how easy is it 1034

to break privacy in federated learning? In: International Conference on Neural Information 1035

Processing Systems, pp. 16937–16947 (2020) 1036

22. Geiping, J., Fowl, L., Huang, W.R., Czaja, W., Taylor, G., Moeller, M., Goldstein, T.: Witches’ 1037

brew: industrial scale data poisoning via gradient matching. In: International Conference on 1038

Learning Representations (2020) 1039

23. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level 1040

perspective (2017). arXiv preprint arXiv:1712.07557 1041

24. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investi- 1042

gation of catastrophic forgetting in gradient-based neural networks (2013). arXiv preprint 1043

arXiv:1312.6211 1044

25. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring attacks on deep 1045

neural networks. IEEE Access 7, 47230–47244 (2019) 1046

26. Hanzlik, L., Zhang, Y., Grosse, K., Salem, A., Augustin, M., Backes, M., Fritz, M.: 1047

Mlcapsule: guarded offline deployment of machine learning as a service. In: IEEE/CVF 1048

Conference on Computer Vision and Pattern Recognition, pp. 3300–3309 (2021) 1049

27. Hayase, J., Kong, W., Somani, R., Oh, S.: Spectre: defending against backdoor attacks using 1050

robust statistics. In: International Conference on Machine Learning, pp. 4129–4139. PMLR 1051

(2021) 1052

28. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage 1053

from collaborative deep learning. In: ACM SIGSAC Conference on Computer and Commu- 1054

nications Security, pp. 603–618 (2017) 1055

29. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database 1056

for studying face recognition in unconstrained environments. In: Workshop on faces in’Real- 1057

Life’Images: Detection, Alignment, and Recognition (2008) 1058

30. Huang, T., Hu, S., Chow, K.-H., Ilhan, F., Tekin, S., Liu, L.: Lockdown: backdoor defense 1059

for federated learning with isolated subspace training. Advances in Neural Information 1060

Processing Systems (2023) 1061

31. Huang, W.R., Geiping, J., Fowl, L., Taylor, G., Goldstein, T.: Metapoison: practical general- 1062

purpose clean-label data poisoning. In: International Conference on Neural Information 1063

Processing Systems, pp. 12080–12091 (2020) 1064

32. Hui, B., Yang, Y., Yuan, H., Burlina, P., Gong, N.Z., Cao, Y.: Practical blind membership 1065

inference attack via differential comparisons. In: Network and Distributed Systems Security 1066

Symposium (2021) 1067

33. Ilhan, F., Su, G., Liu, L.: Scalefl: resource-adaptive federated learning with heterogeneous 1068

clients. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24532– 1069

24541 (2023) 1070

34. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy and high 1071

fidelity extraction of neural networks. In: USENIX Security Symposium, pp. 1345–1362 1072

(2020) 1073

35. Jia, J., Salem, A., Backes, M., Zhang, Y., Gong, N.Z.: Memguard: defending against black- 1074

box membership inference attacks via adversarial examples. In: ACM SIGSAC Conference 1075

on Computer and Communications Security, pp. 259–274 (2019) 1076

36. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s Thesis, 1077

University of Toronto, 2009 1078

37. Leino, K., Fredrikson, M.: Stolen memories: leveraging model memorization for calibrated 1079

White-Box membership inference. In: USENIX Security Symposium, pp. 1605–1622 (2020) 1080

W. Wei et al.

38. Li, S., Cheng, Y., Wang, W., Liu, Y., Chen, T.: Learning to detect malicious clients for robust 1081

federated learning (2020). arXiv preprint arXiv:2002.00211 1082

39. Li, X., Qu, Z., Zhao, S., Tang, B., Lu, Z., Liu, Y.: Lomar: a local defense against poisoning 1083

attack on federated learning. IEEE Trans. Depend. Secure Comput. 20(1), 437–450 (2021) 1084

40. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Anti-backdoor learning: training clean 1085

models on poisoned data. In: International Conference on Neural Information Processing 1086

Systems, pp. 14900–14912 (2021) 1087

41. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression: reducing the 1088

communication bandwidth for distributed training. In: International Conference on Learning 1089

Representations (2018) 1090

42. Liu, W., Chen, L., Chen, Y., Zhang, W.: Accelerating federated learning via momentum 1091

gradient descent. IEEE Trans. Parallel Distrib. Syst. 31(8), 1754–1766 (2020) 1092

43. Long, Y., Wang, L., Bu, D., Bindschaedler, V., Wang, X., Tang, H., Gunter, C.A., Chen, 1093

K.: A pragmatic approach to membership inferences on machine learning models. In: IEEE 1094

European Symposium on Security and Privacy (EuroS&P), pp. 521–534. IEEE, Piscataway 1095

(2020) 1096

44. Lu, H., Liu, C., He, T., Wang, S., Chan, K.S.: Sharing models or coresets: a study based on 1097

membership inference attack (2020). arXiv preprint arXiv:2007.02977 1098

45. Ma, Y., Zhu, X., Hsu, J.: Data poisoning against differentially-private learners: attacks and 1099

defenses. In: International Joint Conference on Artificial Intelligence (2019) 1100

46. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient 1101

learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, 1102

pp. 1273–1282. PMLR (2017) 1103

47. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent 1104

language models. In: International Conference on Learning Representations (2018) 1105

48. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: IEEE Symposium on 1106

Foundations of Computer Science, pp. 94–103 (2007) 1107

49. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage 1108

in collaborative learning. In: IEEE Symposium on Security and Privacy, pp. 691–706 (2019) 1109

50. Mironov, I.: Rényi differential privacy. In: IEEE Computer Security Foundations Symposium, 1110

pp. 263–275 (2017) 1111

51. Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D., Kourtellis, N.: PPFL: privacy- 1112

preserving federated learning with trusted execution environments. In: International Confer- 1113

ence on Mobile Systems, Applications, and Services, pp. 94–108 (2021) 1114

52. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. 1115

In: IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, Piscataway (2017) 1116

53. Nasr, M., Shokri, R., Houmansadr, A.: Machine learning with membership privacy using 1117

adversarial regularization. In: ACM SIGSAC Conference on Computer and Communications 1118

Security, pp. 634–646 (2018) 1119

54. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: 1120

stand-alone and federated learning under passive and active white-box inference attacks. In: 1121

IEEE Symposium on Security and Privacy, pp. 739–753 (2019) 1122

55. Nguyen, T.D., Rieger, P., Chen, H., Yalame, H., Möllering, H., Fereidooni, H., Marchal, S., 1123

Miettinen, M., Mirhoseini, A., Zeitouni, S., Koushanfar, F., Sadeghi, A.-R., Schneider, T.: 1124

Flame: taming backdoors in federated learning. In: USENIX Security Symposium (2022). 1125

56. Peri, N., Gupta, N., Huang, W.R., Fowl, L., Zhu, C., Feizi, S., Goldstein, T., Dickerson, J.P.: 1126

Deep k-NN defense against clean-label data poisoning attacks. In: European Conference on 1127

Computer Vision, pp. 55–70. Springer, Berlin (2020) 1128

57. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 400–407 1129

(1951) 1130

58. Saeidian, S., Cervia, G., Oechtering, T.J., Skoglund, M.: Quantifying membership privacy via 1131

information leakage. IEEE Trans. Inform. Forensics Secur. 16, 3096–3108 (2021) 1132

59. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.: Ml-leaks: model and 1133

data independent membership inference attacks and defenses on machine learning models. 1134

In: Network and Distributed Systems Security Symposium 2019. Internet Society (2019) 1135

Data Poisoning and Leakage Analysis in Federated Learning

60. Schuster, R., Song, C., Tromer, E., Shmatikov, V.: You autocomplete me: Poisoning vulnera- 1136

bilities in neural code completion. In: USENIX Security Symposium, pp. 1559–1575 (2021) 1137

61. Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Goldstein, T.: 1138

Poison frogs! targeted clean-label poisoning attacks on neural networks. In: International 1139

Conference on Neural Information Processing Systems (2018) 1140

62. Shejwalkar, V., Houmansadr, A.: Membership privacy for machine learning models through 1141

knowledge transfer. In: AAAI Conference on Artificial Intelligence, pp. 9549–9557 (2021) 1142

63. Shen, Z., Cervino, J., Hassani, H., Ribeiro, A.: An agnostic approach to federated learning 1143

with class imbalance. In: International Conference on Learning Representations (2022) 1144

64. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against 1145

machine learning models. In: IEEE Symposium on Security and Privacy, pp. 3–18 (2017) 1146

65. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember too much. In: 1147

ACM SIGSAC Conference on Computer and Communications Security, pp. 587–601 (2017) 1148

66. Sun, J., Li, A., Wang, B., Yang, H., Li, H., Chen, Y.: Soteria: provable defense against privacy 1149

leakage in federated learning from representation perspective. In: IEEE/CVF Conference on 1150

Computer Vision and Pattern Recognition, pp. 9311–9319 (2021) 1151

67. Sun, Z., Kairouz, P., Suresh, A.T., McMahan, H.B.: Can you really backdoor federated 1152

learning? arXiv preprint arXiv:1911.07963 (2019) 1153

68. Tabassi, E.: Artificial intelligence risk management framework (AI RMF 1.0). National 1154

Institute of Standards and Technology (2023) 1155

69. Tang, D., Wang, X., Tang, H., Zhang, K.: Demon in the variant: statistical analysis of DNNs 1156

for robust backdoor contamination detection. In: USENIX Security Symposium, pp. 1541– 1157

1558 (2021) 1158

70. Tang, R., Du, M., Liu, N., Yang, F., Hu, X.: An embarrassingly simple approach for trojan 1159

attack in deep neural networks. In: ACM SIGKDD International Conference on Knowledge 1160

Discovery and Data Mining, pp. 218–228 (2020) 1161

71. Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against federated 1162

learning systems. In: European Symposium on Research in Computer Security, pp. 480–501. 1163

Springer, Berlin (2020) 1164

72. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: International 1165

Conference on Neural Information Processing Systems, pp. 8011–8021 (2018) 1166

73. Truex, S., Liu, L., Gursoy, M.E., Wei, W., Yu, L.: Effects of differential privacy and data 1167

skewness on membership inference vulnerability. In: IEEE International Conference on Trust, 1168

Privacy and Security in Intelligent Systems and Applications, pp. 82–91. IEEE, Piscataway 1169

(2019) 1170

74. Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Demystifying membership inference attacks 1171

in machine learning as a service. IEEE Trans. Services Comput. 14(6), 2073–2089 (2019) 1172

75. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural cleanse: 1173

identifying and mitigating backdoor attacks in neural networks. In: IEEE Symposium on 1174

Security and Privacy, pp. 707–723 (2019) 1175

76. Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H., Agarwal, S., Sohn, J.Y., Lee, K., 1176

Papailiopoulos, D.: Attack of the tails: Yes, you really can backdoor federated learning. 1177

In: International Conference on Neural Information Processing Systems, pp. 16070–16084 1178

(2020) 1179

77. Wang, L., Xu, S., Wang, X., Zhu, Q.: Addressing class imbalance in federated learning. In: 1180

AAAI Conference on Artificial Intelligence, pp. 10165–10173 (2021) 1181

78. Wang, Y., Wang, C., Wang, Z., Zhou, S., Liu, H., Bi, J., Ding, C., Rajasekaran, S.: Against 1182

membership inference attack: pruning is all you need. In: International Joint Conference on 1183

Artificial Intelligence (2021) 1184

79. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring class 1185

representatives: user-level privacy leakage from federated learning. In: IEEE Conference on 1186

Computer Communications, pp. 2512–2520 (2019) 1187

80. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error 1188

visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) 1189

W. Wei et al.

81. Wei, W.: Adversarial resilient and privacy preserving deep learning. PhD Thesis, Georgia 1190

Institute of Technology, Atlanta, GA, 2022 1191

82. Wei, W., Liu, L.: Gradient leakage attack resilient deep learning. IEEE Trans. Inform. 1192

Forensics Secur. 17, 303–316 (2022) 1193

83. Wei, W., Liu, L., Loper, M., Chow, K.H., Gursoy, M.E., Truex, S., Wu, Y.: A framework 1194

for evaluating client privacy leakages in federated learning. In: European Symposium on 1195

Research in Computer Security, pp. 545–566. Springer, Berlin (2020) 1196

84. Wei, W., Liu, L., Wu, Y., Su, G., Iyengar, A.: Gradient-leakage resilient federated learning. 1197

In: IEEE International Conference on Distributed Computing Systems, pp. 797–807 (2021) 1198

85. Wei, W., Liu, L., Zhou, J., Chow, K.-H., Wu, Y.: Securing distributed SGD against gradient 1199

leakage threats. IEEE Trans. Parallel Distrib. Syst. 34(7), 2040–2054 (2023) 1200

86. Weng, H., Zhang, J., Xue, F., Wei, T., Ji, S., Zong, Z.: Privacy leakage of real-world vertical 1201

federated learning (2020). arXiv preprint arXiv:2011.09290 1202

87. Wu, D., Wang, Y.: Adversarial neuron pruning purifies backdoored deep models. Adv. Neural 1203

Inform. Process. Syst. 34, 16913–16925 (2021) 1204

88. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking 1205

machine learning algorithms (2017). arXiv preprint arXiv:1708.07747 1206

89. Xie, C., Huang, K., Chen, P.Y., Li, B.: DBA: distributed backdoor attacks against federated 1207

learning. In: International Conference on Learning Representations (2019) 1208

90. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting AI trojans using meta 1209

neural analysis. In: IEEE Symposium on Security and Privacy, pp. 103–120 (2021) 1210

91. Xue, M., Nepal, S., Liu, L., Sethuvenkatraman, S., Yuan, X., Rudolph, C., Sun, R., Eisen- 1211

hauer, G.: Rai4ioe: responsible AI for enabling the internet of energy. In: IEEE International 1212

Conference on Trust, Privacy and Security in Intelligent Systems and Applications (2023) 1213

92. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. 1214

ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019) 1215

93. Yao, X., Huang, T., Zhang, R.X., Li, R., Sun, L.: Federated learning with unbiased gradient 1216

aggregation and controllable meta updating (2019). arXiv preprint arXiv:1910.08234 1217

94. Yin, H., Mallya, A., Vahdat, A., Alvarez, J.M., Kautz, J., Molchanov, P.: See through 1218

gradients: image batch recovery via GradInversion. In: IEEE/CVF Conference on Computer 1219

Vision and Pattern Recognition, pp. 16332–16341 (2021) 1220

95. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: Improved deep leakage from gradients (2020). 1221

arXiv preprint arXiv:2001.02610 1222

96. Zhao, L., Hu, S., Wang, Q., Jiang, J., Shen, C., Luo, X., Hu, P.: Shielding collaborative 1223

learning: mitigating poisoning attacks through client-side detection. IEEE Trans. Depend. 1224

Secure Comput. 18(5), 2029–2041 (2020) 1225

97. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID 1226

data (2018). arXiv preprint arXiv:1806.00582 1227

98. Zheng, R., Tang, R., Li, J., Liu, L.: Data-free backdoor removal based on channel lipschitz- 1228

ness. In: European Conference on Computer Vision, pp. 175–191. Springer, Berlin (2022) 1229

99. Zhu, C., Huang, W.R., Li, H., Taylor, G., Studer, C., Goldstein, T.: Transferable clean-label 1230

poisoning attacks on deep neural nets. In: International Conference on Machine Learning, pp. 1231

7614–7623. PMLR (2019) 1232

100. Zhu, J., Blaschko, M.: R-gap: recursive gradient attack on privacy. In: International Confer- 1233

ence on Learning Representations (2021) 1234

101. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: International Conference on Neural 1235

Information Processing Systems, pp. 14747–14756 (2019) 1236

AUTHOR QUERY

AQ1. Please note that Tables 1 and 2 were not sequentially cited in the text, and
have been renumbered in the text to maintain the sequential order in the text.
Please check, and correct if necessary.

	Data Poisoning and Leakage Analysis in Federated Learning
	1 Introduction
	2 Federated Learning Preliminary
	3 Data Leakage and Privacy Protection
	3.1 Threat Model
	3.2 Training Data Privacy Leakage Formulation
	3.3 Observations on the Training Data Leakage Attacks
	3.3.1 Observation 1: Training Model Access
	3.3.2 Observation 2: Impact of Attack Timing
	3.3.3 Observation 3: Effect of Model Perturbation with Constant Noise

	3.4 Privacy Protection with Dynamic Perturbation
	3.5 Other Privacy Concerns in Federated Learning
	3.5.1 Training Data Leakage Attacks Under Privacy-Enhancing Tools
	3.5.2 Other Privacy Intrusion Attacks Under Privacy-Enhancing Tools

	4 Data Poisoning and Security Assurance
	4.1 Threat Model
	4.2 Training Data Poisoning Attack Formulation
	4.2.1 Targeted Dirty-Label Poisoning
	4.2.2 Backdoor Poisoning
	4.2.3 Clean-Label Poisoning

	4.3 Observations on the Training Data Poisoning Attacks
	4.3.1 Observation 1: Training Data Access
	4.3.2 Observation 2: Impact of Attack Timing
	4.3.3 Observation 3: Model Perturbation with Constant Amount of Noise

	4.4 Boosting Poisoning Resilience with Dynamic Model Perturbation
	4.5 Categorization of Poisoning Mitigation Techniques
	4.5.1 Server-Side Mitigation Techniques
	4.5.2 Neural Network Cleansing Techniques.

	5 Other Risk Factors in Federated Learning
	5.1 Data Skewness and Biases
	5.2 Misinformation
	5.3 AI Ethics
	5.4 Responsible and Equitable AI

	6 Conclusion
	References

