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Abstract— In this paper we present two examples of recent 

investigations that we have undertaken, applying Machine 

Learning (ML) neural networks (NN) to image datasets from 

outer planet missions to achieve feature recognition. Our first 

investigation was to recognize ice blocks (also known as rafts, 

plates, polygons) in the chaos regions of fractured ice on Europa. 

We used a transfer learning approach, adding and training new 

layers to an industry-standard Mask R-CNN (Region-based 

Convolutional Neural Network) to recognize labeled blocks in a 

training dataset. Subsequently, the updated model was tested 

against a new dataset, achieving 68% precision. In a different 

application, we applied the Mask R-CNN to recognize clouds on 

Titan, again through updated training followed by testing 

against new data, with a precision of 95% over 369 images. We 

evaluate the relative successes of our techniques and suggest 

how training and recognition could be further improved. The 

new approaches we have used for planetary datasets can further 

be applied to similar recognition tasks on other planets, 

including Earth. For imagery of outer planets in particular, the 

technique holds the possibility of greatly reducing the volume of 

returned data, via onboard identification of the most interesting 

image subsets, or by returning only differential data (images 

where changes have occurred) greatly enhancing the 

information content of the final data stream. 
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1. INTRODUCTION 

Planetary Science may be defined as the study of Solar 

System bodies, usually excluding the Earth and Sun, which 

have their own specialist fields (Earth Sciences and 

Heliophysics, respectively). An exception to the Earth and 

Sun exclusions is for the cases where their interactions with 

the other planets, moons and small bodies is under 

investigation, e.g., solar wind causing aurora on Jupiter, or 

study of gravitational evolution of the Earth-Moon system. 

Until recently, returned image datasets from planetary 

science missions have been modest, due to the relatively 

small numbers of missions, and limitations in downlink 
bandwidth through the Deep Space Network (DSN) [8-10]. 

Their sparsity has allowed for multiple generations of 

researchers to conduct geophysical analysis by manual 

examination of images to classify features such as craters, 

volcanoes and rifts. The future of planetary science bodes to 

be different, with increasing numbers of missions from larger 

numbers of space agencies participating in interplanetary 

research voyages, and vastly larger amounts of data being 

returned for analysis. As with Earth remote sensing, this 

changing exploration landscape requires a paradigm shift in 

how planetary science is conducted, and most especially 
making use of advanced computational tools to leverage the 

expertise of human researchers, and to make analysis of very 

large datasets tractable.  

In this paper we discuss recent progress by our group on the 

application of Machine Learning to problems in planetary 

science, in particular to recognition of features on images. We 

discuss two applications from different datasets, with 

differing target bodies and feature types: (i) recognition of ice 

blocks in Europa Chaos from Galileo image data [11], and 

(ii) recognition of clouds on Titan from Cassini image data 

[12]. 

Our present work builds on previous work at NASA Langley 
Research Center (LaRC) on machine learning applications to 

imaging and remote sensing data. This includes an 

application to detect open parking spaces at NASA centers 

[13], and one for the detection of above anvil cirrus plumes 

(tops of thunderstorms) using GOES-16 visible and infrared 

satellite image data [14, 15]. More recently ML has been 

applied to monitor the health of coral reefs using CALIPSO 

(Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite 

Observations) satellite data [16]. 

In Section 2 we give a brief introduction to artificial 

intelligence techniques in image recognition, followed in 
Section 3 by a discussion of previous AI applications in 

planetary science. In sections 4 and 5 we discuss our new 

results for Europa ice blocks and Titan clouds respectively. 

In Section 6 we draw conclusions and suggest areas of further 

work. 

2. BRIEF PRIMER: IMAGE RECOGNITION 

TECHNIQUES IN MACHINE LEARNING 

Machine Learning (ML) is usually categorized as a sub-field 

of the broader discipline of Artificial Intelligence (AI) in 

computer science. The goal of AI is to create ‘human-like’ 
intelligence, typically through some type of computer 

program that may or may not have any prior knowledge base 

- i.e., it could be an ab initio creation of the programmer 

based on logic, statistics etc. Many types of AI are based on 

Neural Networks (NN), which are networks of nodes linked 

by weights that are loosely based on the brain architecture of 

living organisms, i.e. networks of neurons (Fig. 1). A Neural 

Network is said to be fully connected if all the neurons in each 

layer are connected to the previous layer. 

ML in particular is a knowledge or learning-based type of AI: 
a computer program is fed a set of data (images, sounds, 

handwriting, chess positions etc) as inputs, from which it is 

asked to make predictions or identifications such as faces, 

words, moves etc as outputs. The program is then given 

information about the correctness of its outputs and allowed 

to store this knowledge in some form to ‘learn’ from its past 

efforts and to improve performance (Fig. 2). Many ML 

programs use a NN architecture to store knowledge as 

weights between the input, hidden and output layers.  

In recent years, a particular type of AI has gained 

prominence: Deep Learning (DL) based on Neural Networks 
(NN). The term Deep Learning refers to a neural network 

with multiple hidden layers. One particular type of NN is 

particularly relevant, the Convolutional Neural Network 

which is designed to extract higher-order features (such as 

faces, cats, bicycles etc in image data) from the input data 

 
Figure 1: Architecture of a simple ‘feed forward’ 

neural network (NN), showing the key properties of 

input, hidden and output layers. A NN may have 

multiple hidden layers.  

 

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
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(Fig. 3). A CNN has an architecture specifically inspired by 

an animal visual cortex. The convolutional nature of a CNN 

arises from the fact that a square window (or kernel) of fixed 

size, e.g. 3´3 pixels, is moved across the image, and at each 

position multiple filters are applied to the data. The applied 

filters help to determine individual features. The outputs of 

the applied filters are used as inputs to a fully connected 

neural network, and the outputs of this neural network are 

compared to the image’s labels to tune the weights of the 

neural network.  

CNNs have been used in image recognition tasks to classify 

images and to recognize objects in the images [17]. 
Classification is the more straightforward task. At the most 

basic level it is binary: e.g., does the image contain a face 

(yes/no)? This often requires object detection to recognize 

objects within the image (e.g., a face, a traffic cone, a car) 

which can be localized with a bounding box - ie., the 

coordinates of a rectangular perimeter enclosing the detected 

feature. More difficult is instance segmentation, where every 

pixel of the image is classified separately as belonging to the 

desired feature or not. So, the pixels of a face would be 

labeled as ‘face’ pixels while those of a car would be ‘car’ 

pixels.  

An early significant success of a CNN was LeNet-5 [18], 

which was designed for handwriting recognition. The 

commencement of the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in 2010 led to rapid 

developments in NN. In the inaugural year, the winning AI 

had a 28% error rate on the standardized visual recognition 

tasks. By 2012, the AlexNet program achieved a dramatic 

drop in error rate to 16.4%, and by 2015 the ResNet had taken 

the winning error rate to 3.6%, outperforming a benchmark 

human score (5%). 

A major advance in rapid image segmentation in the past five 
years has been the development of the Mask R-CNN model 

[4, 5, 19], a modification of an earlier model (Fast/Faster R-

CNN). The traditional R-CNN (Region-based CNN) is 

designed to pay attention only to smaller sub-areas of the 

image (called regions of interest, RoI) and to classify each 
individual RoI using a CNN. Mask R-CNN adds a parallel 

branch of code for instance segmentation while the existing 

R-CNN is simultaneously producing object recognition with 

bounding box. The key advance here was the parallel 

approach to object recognition and instance segmentation, as 

shown in Fig. 4.  

We conclude our discussion of image recognition techniques 

by defining some standard success criteria that will be used 

throughout this paper: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where the terms refer to: 

 
Figure 4: Various proposed ML architectures [1-5] for 

adding segmentation task to basic classification task as 

implemented in Faster R-CNN. Note that Mask R-CNN 

uniquely takes a parallel approach. 

Segmentation

Deep Mask Pinheiro et al.

Bounding Box 

Proposal (RPN)
Segmentation

Bounding Box 

Proposal (RPN)

Segmentation

Network Cascades Dai et al.

Mask R-CNN He et al.

Bounding Box 

Proposal (RPN)

Feature Extraction 

and Classification

Faster R-CNN Ren et al.

Feature Extraction 

and Classification

Feature Extraction 

and Classification

Feature Extraction 

and Classification

 
Figure 2: Architecture of a single neuron in a Neural 

Network. Inputs (X) are weighted (W) and bias (b) is 

added, before passing the output (z) to an activation 

function (s) which produces a prediction (a). The result 

is also compared to prior knowledge (y) in an 

evaluation step, where a Loss Function (L) is computed 

that determines the quality of the result. When L is 

large, weights are adjusted significantly for the next 
iteration. As learning improves, L diminishes and the 

weights approach optimal values for a given dataset. 

z = WTX + b a = s(z)

L(a,y)

X

PredictionInputs Weighting

Learning
 

 

Figure 3: Architecture of a Convolutional Neural 
Network (CNN), showing key features: convolution 

layers and pooling layers for feature learning, and 

final classification layers. Image NASA/B. Griswold. 
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 TP = True positive identifications 

 TN = True negative identifications 

FP = False positive identifications 

 FN = False negative identifications  

 

3. PREVIOUS IMAGE RECOGNITION 

APPLICATIONS IN PLANETARY SCIENCE 

Machine Learning (ML) applications in Planetary Science 

are already diverse and may be divided into the broad 

categories of engineering applications, and scientific 

applications. Engineering applications include topics such as 

spacecraft autonomy and fault recovery, while scientific 

applications are largely focused on analysis of returned data. 

In the future, these somewhat distinct applications are 
expected to converge in the quest for more efficient 

instrument operations, with on-board data analysis being fed 

back into intelligent instrument tasking, scene selection and 

selective data downlink [20]. In this paper the applications 

we discuss are exclusively feature recognition of returned 

images, however we note that in the future this type of 

application may merge with onboard instrument operations. 

For now, we will restrict our literature review to previous 

applications of image recognition to keep in line with the 

scope of the paper. 

Crater detection: The automated detection of craters - one of 
the most easily recognizable types of surface feature on solid 

surface planets and moons – was identified early as an 

obvious application for AI techniques. However even this 

‘simplest’ problem poses challenges due to a wide range of 

crater sizes, morphologies (e.g. central peak vs no peak) and 

ages, which may lead to degradation of the rim or over-

printing with younger craters. 

The use of neural networks for crater detection was attempted 

as far back as 2005 [21], when four different approaches to 

search for craters in Viking image data of Mars were 

compared. The most successful of these, the Support Vector 

Machine (SVM) approach outperformed other approaches 
such as Feed Forward Neural Network (FFNN) and 

Continuously Scalable Template Model (CSTM). However 

the NN only detected 60% of true craters, and so was deemed 

at the time to be more useful as pre-filter for a human, rather 

than successful enough to be used as a fully autonomous 

technique. Nevertheless, this early work set the stage for later 

work with improved fidelity. 

Rapid developments in AI since then, including the 

development of CNNs, promoted a renewed interest in 

automated crater counting beginning around 2015 (see recent 

review in [22]).1 Initially, AI techniques were focused on 
image classification, such as the work of Emami et al. [23] 

who used a two-step approach consisting of a non-AI 

quantifier to identify candidate crater regions, followed by a 

 
1 We note that the authors of this review were able to list all 13 papers then 

published that applied AI techniques to crater recognition in a single table – 

NN to provide the final classification. A similar approach was 

taken by [24] to identify other features on Mars images: 

volcanic rootless cones and transverse aeolian ridges.  

Martian crater recognition was later extended to 

segmentation using a U-Net based approach to identify 
craters in the size range 2-32 km in infrared data  from the 

THEMIS (Thermal Emission Imaging System) instrument on 

the Mars Odyssey spacecraft [25], achieving a precision of 

~85% and recall of ~67%. 

In another approach, Lagain et al. [26] trained a NN to detect 

small craters on Mars with the goal of improving crater aging. 

And more recently the Inception-V3 image classifier, 

pretrained on 1.2 million images from ImageNet, was used in 

a transfer learning application to recognize fresh craters on 

Mars, succeeding with scores of 0.98 (precision), 0.975 

(accuracy) and 0.93 (recall). 

Beyond Craters: In 2020, Wilhelm et al. [27] tackled the 
wider problem of landform recognition on Mars, with the aim 

of greatly speeding up geological mapping, a process which 

could take years for experienced geologists to produce new 

wide-area maps. The team trained six different NN in a 

supervised learning approach to using image data from the 

Context Camera (CTX) on the Mars Reconnaissance Orbiter 

(MRO) [27]. The NN was able to recognize 15 different 

surface feature classes on Mars - including craters but also 

other landform types such as dunes, cones and ridges – 

providing encouragement that the tedious task of geological 

mapping will be able to be greatly accelerated in the future 

with the assistance of ML techniques. 

Cassini Imagery: While we have focused in this review 

section on Mars, which is heavily studied due to large 

available datasets of high-resolution imagery, ML image 

recognition has been extended to other bodies in the solar 

system. Yang et al. (2018) applied the Extreme Learning 

Machine (ELM) technique of Huang et al. [28] to edge-

detection of objects (moons) in Cassini images, achieving a 

94% accuaracy. The same group followed up in 2020 tackling 

the problem of contour detection on disk-resolved objects, 

used to find the center. In this work [29] they showed that 

Hierarchical-ELM outperformed SVM, ELM and D-CNN. 
Finally in 2021 AlDabbas and Gal showed that Deep CNN 

can be applied to Cassini images to provide diverse image 

classification. 

 

4. PROBLEM 1: DETECTING ICE PLATES IN 

EUROPA’S CHAOS TERRAINS 

Scientific Background: Europa is one of the four large moons 

of Jupiter known as the ‘Galilean Satellites’, in honor of 

Galileo Galilei who first saw them through his telescope at 

the University of Padua in 1610. Europa is the smallest of the 

four at 3122 km diameter, and orbits Jupiter in 85.2 hours 

(3.55 Earth days). Locked in the middle of a 4:2:1 orbital 

a situation unlikely to hold true for long. 
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resonance with Io (interior) and Ganymede (exterior), Europa 

is prevented from fully circularizing its orbit, and therefore 

experiences varying tidal forces around its orbit. 
Gravitational interactions with Jupiter and the other large 

satellites cause tidal heating of the interior, which leads to 

surface fracturing (e.g. ‘cycloids’) [30-32] and resurfacing, 

keeping the surface relatively young (20-180 Myr) [33, 34]. 

Europa’s interior water ocean [35, 36], detected through its 

magnetic field signature by the Galileo spacecraft [37-39], is 

thought to lie 15-25 km below the surface and extend to a 

depth of 60-150 km relative to the surface. 

In some parts of the surface there appear to be areas of ice 

blocks, perhaps recently mobile, that are now refrozen into a 

surface matrix. These ‘chaos regions’ (e.g. Conamara Chaos, 
Fig. 5) [40-45] are areas of intense scientific interest and 

focus, since they may be the areas where interior water has 

most recently been frozen onto the surface, and hence the best 

places to search for signatures of sub-surface ocean life 

without having to drill through the crust.  

Objective: The objective of our first project was to provide 

automated recognition of ice blocks on Europa chaos regions. 

These appear as jagged polygonal features, with the larger 

blocks often displaying a distinctive imprinted lineation, 

apparently relics from the pre-disruption surface. 

Feature Definition: Spaun et al. (1998) [6]  in their detailed 

study of early Galileo images arrived at a working 
classification scheme for different features with the chaos. 

The scheme divided the features into two broad types: the 

large ‘textured polygons’, and ‘matrix’ consisting of four 

sub-types of successively smaller sizes, listed Table 1. 

Everything else surrounding the features was ‘background’. 

Examples are shown in Fig. 6. 

Rigorously determining the various feature types was not 

trivial for human scientists, and would be very challenging 

for a computer algorithm. In particular, early tests with 

human labeling of features showed us that different viewers 

would impose different cut-offs between the different block 

types. We therefore decided to focus only on the largest 

blocks (‘polygons’) and to formalize the definition as much 

as possible. Following previous authors ([6], updated by [7]) 

we define polygons as having: 

1) ‘recognizable linear textures’ (e.g., ridges, grooves, 

bands) that are ‘usually sharp and crisp’.  

2) A well-defined perimeter. 

3) Evidence of elevation above the surrounding 

matrix/mélange, which leads to shadowing under 

low angle sun conditions.  

Labeling: The USGS Astrogeology Science Center provided 

92 photogrammetrically-controlled global image mosaics of 

Figure 6: Examples of chaos feature types under our 

definition, adapted from that of Spaun et al. (1998) [6]. 

Image credit: NASA/JPL 

 

Examples

 
Figure 5: Europa, Conamara Chaos Region as seen 

by Galileo composited from images taken in August 

1996, December 1996, and February 97. Composite 

image PIA03002. Credit: NASA/JPL-Caltech. 

 

Table 1: Europa chaos feature types: our definition 

adapted from Spaun et al. (1998). 

 
Category Type Features 

Polygon Polygon Large pieces with well-

defined surface lineation, 

often in multiple 

directions. 

Matrix Micro-

polygons 

Medium sized pieces with 

poorly-defined lines. 

Matrix Angular 

blocks 

Small pieces where the 

width in one dimension 

approaches the height 

above the background, 

implied by shadowing. 

Matrix Peaks Even smaller pieces 

where both length and 

width appear similar to 

height. 

Matrix Hummocky Smallest distinguishable 

floating fragments. 

Background Background Non-feature material 

within the chaos. 
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Europa. For our training dataset, we identified chaos regions 

in the Galileo SSI RegMaps (‘Regional Maps’) that were ≥ 

50 km in length along the chaos’ long axis (see Fig. 7 for full 

planet map). An example of such a chaos region is shown in 

the high-resolution image of the Conamara Chaos in Fig. 8. 

We used the RegMaps because the resolution is roughly the 
same through the images at about 250 m/pixel. We also chose 

the RegMaps because we can look at the differences between 

the Trailing hemisphere and Leading hemisphere of Europa 

and also at latitudinal differences.  

Armed with a robust definition, we proceeded to identify 

individual chaos blocks (green in Fig. 8) that were ≥ 2 km in 

diameter, based on the resolution limitation for the given 

images, and met our three criteria given in the previous 

section. We labeled polygons in N chaos regions by vertex 

identification in Europa maps in ArcGIS. Within our labeling 

process, we also added information into the Attribute Table 

for each polygon, or chaos block, about each block’s physical 

characteristics, such as area, as well as location and 

morphology type (plate vs knobby as per the definitions of 

[7]).  

A histogram of identified block sizes is shown in Fig. 9. 

Further geophysical investigation of the size distribution will 

be given in a later paper. 

Machine Learning: Having arrived at a fully labeled dataset, 

the next step was to match the data to the input layer of our 

machine learning model (Mask R-CNN). First some 

preprocessing of the input data was necessary so that it can 

be interpretable for the Mask R-CNN model. This included 

exporting the .tiff image files and .shp label files from 

ArcMap, part of the ArcGIS suite, and converting the images  

into 750 dpi resolution images. The initial batch of data was 

 
Figure 8: Conamara Chaos image (left) and human 

labeled view (right). 

 

 
 
Figure 7: Europa global mosaic from Galileo SSI data, with chaos regions identified. Names are arbitrary but our 

naming convention follows that of Leonard et al., 2022 [7].  

Chaos aa
Chaos bb

Chaos ee

Chaos ff
Chaos gg

Chaos hh
Chaos jj

Chaos kk
Chaos ii

Chaos cc

Chaos dd
Chaos Co

Chaos A Chaos B
Chaos D

Chaos CChaos E

Chaos F Chaos G

Chaos H

Chaos I

 
Figure 9: Chaos block size distribution from human 

labeling. 
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restricted to the 17ESNERTRM01_GalileoSSI_Equi-cog.tif 

image file which had a resolution of 210 meters per pixel.  

The next step was to load the images and labels onto the 
Google Cloud Platform for increased computing power that 

was later utilized for training and inference of the machine 

learning model. The images were then meticulously cropped 

to avoid included jagged image edges and image gaps that are 

a remote sensing artifact. We randomly broke up the image 

into ~50´50 km image tiles that only included one or more 

ice blocks. Then we split the data into 80% training, 10% 

testing, and 10% validation sets, which is standard industry 

practice.  

Finally, there was an additional instance segmentation step 

required for the preprocessing this dataset. Due to the status 

of the labels pulled from the ArcMap platform, all the blocks 

were labeled with the same color. For the machine learning 
algorithm to identify the ice blocks as different entities, they 

need to be transformed into different colors.  After this 

process is accomplished, the image and label tiles are ready 

to be processed in the machine learning algorithm. 

Learning proceeded for the Mask R-CNN through the 

PyTorch architecture developed on the Google Cloud 

Platform.  Training involved batching the augmented training 

dataset into batches of 4 images with a binary cross-entropy 

loss function. Loss converged after 20 epochs. The model 

infers a label of “ice block” in yellow and “background” 

purple for each pixel of a given image (Fig. 10). 

Results: We evaluate the performance of the model based on 

two metrics: 

1) How well does the model identify that an ice block is 

within a given bounding box (binary classification)? 

2) Given a positive classification for the existence of an ice 

block, how well does the model classify each pixel 

within the bounding box (instance segmentation)? 

 
The first question can be answered by using accuracy, 

precision, recall which are defined as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
= 0.75 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 0.68 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 0.75 

 

An accuracy of 0.75 indicates that the model correctly 

classified 75% of all images in the test set, regardless of their 

true label. The precision score indicates that, of all the 

positive classifications made by the model, 68% were correct. 

 

a.  

 

b.  

Figure 10: (a) Correct classification of ice blocks in chaos cc region on Europa. (b) Incorrect classification of ice 
blocks in chaos cc region on Europa 
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Similarly, the recall score indicates that, of all the true 

positive labels in the test set, the model correctly identified 

75% of them. In short, the areas of difficulty for the model 

were primarily in predicting a high number of FP (false 

positives). This could be, in part, due to the non-ice block 
sections of chaos regions appearing to have one or more 

features of ice blocks (see earlier sections). Additional fine-

tuning will be conducted to minimize erroneous predictions. 

 

The second question can be answered by assessing how well 

the model classifies each pixel with an intersection over 

union (IoU) score which is defined as follows: 

 

𝐼𝑜𝑈 =	
𝑇𝑟𝑢𝑒	𝐿𝑎𝑏𝑒𝑙	 ∩ 𝑀𝑜𝑑𝑒𝑙	𝐿𝑎𝑏𝑒𝑙		

𝑇𝑟𝑢𝑒	𝐿𝑎𝑏𝑒𝑙	 ∪ 𝑀𝑜𝑑𝑒𝑙	𝐿𝑎𝑏𝑒𝑙
 

 

This score is produced for each image, therefore an average 

of all images IoU is used. The average IoU is again 0.53. This 

result is likely due to the many similarities of shadows, lines 

and coloration that ice blocks share with the hummocky 

background found within Europan Chaos regions. 

 

5. PROBLEM 2: MAPPING TITAN CLOUDS 

Scientific Background: Titan is the largest moon of Saturn, 

the second largest moon in the Solar System, and with a 

diameter of 5150 km is larger than the planet Mercury (4880 
km) [46] – albeit much less dense. The most remarkable fact 

about Titan however is that it is the only moon in the Solar 

System to have a dense atmosphere. Its atmosphere is largely 

composed of nitrogen gas (N2,  ~95%) but with a substantial 

amount of methane (CH4 ~5%) [47]. These two gases 

chemically react once activated by sunlight, created a dense 

mixture of complex organic chemicals [48], and a hazy 

yellow smog that obscures sight of the surface at visible 

wavelengths [49, 50] (Fig. 11). 

Titan’s surface temperature (~95 K) [51-53] is close to the 

triple point of methane, but as air rises it cools adiabatically, 

so that around 15-30 km altitude methane condenses, forms 

clouds and rains out onto the surface [54, 55], where it re-

evaporates back into the atmosphere [56]. Methane on Titan 

therefore plays a similar role to water on Earth as a 

condensable, precipitable substance that exists in multiple 

phases. The origin and persistence of methane on Titan 

remains a puzzle [57], since it is slowly destroyed by 

sunlight, and none should be remaining at the present day, 
unless somehow replenished. The questions of Titan’s 

atmospheric origin are beyond the scope of this paper, 

however the reader may take away the message that 

improving our understanding of Titan’s methane cycle is of 

fundamental importance to understanding Titan and the 

wider Solar System.  

Although Titan’s atmosphere is opaque at visible 
wavelengths, at some near-infrared wavelengths the 

atmosphere becomes transparent and the surface can be 

glimpsed. In addition, methane clouds may be seen (Fig. 12). 

Objective: The objective of the second problem we tackled 
was to recognize and map the methane clouds in Titan’s 

lower atmosphere from Cassini images. This was to prove a 

difficult problem in image segmentation, since the edges of 

clouds are by nature ill-defined. 

By assigning each pixel of a given image a label of ‘cloud’ or 

‘no cloud,’ an instance segmentation model would provide 

 
Figure 11: Titan in natural color image by Cassini’s 

Imaging Science Sub-system (ISS) Jan. 30, 2012 at a 
distance of 191,000 km. PIA14602. Image Credit 

JPL/NASA/Space Science Institute. 

 

 

 
Figure 12: Examples of clouds on Titan. Images 

captured by Cassini Imaging Science Subsystem (ISS) 

CB3 filter (938 nm) between 2014 and 2017 at a distance 

of 1-5´105 km. 
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the location of cloud formations within the image. This 

information might then be used to calculate cloud areas, 

centroids, and other metrics.  

Dataset: From the complete Cassini dataset we selected a 

subset of 798 images, roughly half containing examples of 
cloud formations. While Cassini provided hundreds of 

thousands of images, we chose this small sample to capture a 

variety of structures without requiring excessive pre-

processing and labeling. The dataset contains examples of all 

common cloud formations found in the complete database. 

Several instances of images without clouds were selected for 

their atmospheric features or artifacts that resembled clouds 

to account for potential false positives.  

This dataset was then further divided into training and testing 

sets. The training set contains 429 images, and the testing set 

contains 369. Each image was hand-labeled using LabelMe 

software, producing a polygon for each cloud formation. The 
pixels enclosed in these polygons were assigned the “cloud” 

label, and all others were assigned the “no cloud” label.  

Machine Learning: The model was constructed in PyTorch 

with code running on a Google Cloud Platform image. 

Training the Mask R-CNN involved batching the augmented 

training dataset into batches of 16 images with a binary cross-

entropy loss function. Loss converged after 30 epochs. The 

model infers a label of “cloud” or “no cloud” for each pixel 

of a given image. We assign each positive cloud label a 

distinct color to view these pixels, producing a mask (Fig. 13) 

Results: We evaluate the performance of the model based on 

two metrics: 

1) How well does the model identify that a cloud formation 

exists within a given image (binary classification)? 
2) Given a positive classification for the existence of a 

cloud, how well does the model classify each pixel in the 

image (instance segmentation)? 

 
To address the former, we use three statistical measures: 

accuracy, precision, and recall. We define and compute each 

as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
= 0.83 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 0.95 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 0.75 

 

An accuracy of 0.83 indicates that the model correctly 

classified 83% of all images in the test set, regardless of their 

true label. The precision score indicates that, of all the 

positive classifications made by the model, 95% were correct. 

Similarly, the recall score indicates that, of all the true 

positive labels in the test set, the model correctly identified 

75% of them. To summarize these statistics, the model may 

miss a true positive example of a cloud in an image, but when 

it does predict that a cloud exists it is almost always correct. 
This leaves room for improvement of our approach in future 

iterations, potentially by labelling more training data.  

For each of the 173 images in which the model inferred the 

presence of at least one cloud, we assess how well it classifies 

each pixel with an intersection over union (IoU) score, 

calculated as follows. 

𝐼𝑜𝑈 =	
𝑇𝑟𝑢𝑒	𝐿𝑎𝑏𝑒𝑙	 ∩ 𝑀𝑜𝑑𝑒𝑙	𝐿𝑎𝑏𝑒𝑙		

𝑇𝑟𝑢𝑒	𝐿𝑎𝑏𝑒𝑙	 ∪ 𝑀𝑜𝑑𝑒𝑙	𝐿𝑎𝑏𝑒𝑙
 

This score is produced for each image, so we calculate the 

IoU of all such images by computing the average. The 

average IoU is 0.77. Note that this includes nine false positive 

cases, which each have an IoU of zero. An IoU of 0.77 

indicates that the model correctly identifies a majority of 

cloudy pixels across all images. Upon inspecting instances 

where the model showed a low IoU (for example, less than 

0.5), it became clear that the model struggled to identify clear 

edges, often identifying the correct location of the cloud but 

conservatively underestimating the cloud structure. This is 

likely a result of the ill-defined nature of cloud edges on 

Titan, as previously mentioned. 

Our methods achieve comparable results to those used to 

identify and segment terrestrial clouds as well. Le Goff et. al 

use a convolutional neural network for this purpose, 

achieving a precision score of 81% and a recall of 75% [58]. 

Similarly, Li et al. fuse high-resolution satellite data from 

published GaoFen-1 WFV cloud and cloud shadow cover 

validation data to achieve an average IoU of 0.9 and an 

accuracy of over 95% [59]. Francis et al. also demonstrate the 

efficacy of U-Net, another popular semantic segmentation 

architecture, on data from the Carbonite-2 and Landsat 8 
satellites, recording a 91% accuracy [60]. Our work on Titan 

demonstrates similarly high scores despite the much higher 

 
Figure 13: Example classification of two images. Pixels 

predicted with “cloud” labels are colored in blue. 

 

(a) (b)

(c) (d)
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image quantity and quality available from terrestrial remote 

sensing compared to currently available planetary science 

image data.  

 

 6. SUMMARY AND CONCLUSIONS 

In this paper we have described two new applications of 

machine learning to problems in planetary science: 

recognition of ice blocks on Europa, and recognition of 

clouds on Titan. The approach we used in both cases was 

transfer learning used a pre-trained CNN that was 

subsequently minimally retrained on a training dataset before 

application to a test dataset. The precision obtained was 95% 
for Titan, showing impressive ability to replicate a human 

labeler. The cloud recognition approach should readily be 

applicable to similar problems for cloud recognition on Earth, 

Mars and other planets. For Europa we obtained a lower 

precision of 68%. In the future we believe that this can be 

improved by use of a more consistent set of labeled data, and 

we have plans to investigate crowd-sourcing as a way to 

achieve this. Overall, it appears that ML will play a large and 

increasing role in planetary exploration, including not just 

science applications but also in engineering and autonomous 

operations and decision making. 
 

 APPENDICES  

A.  ACRONYMS AND ABBREVIATIONS 

 

AI Artificial Intelligence 

BPNN Back Propagation Neural Network 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observations 

CNN Convolutional NN 

CSTM Continuosly Scalable Template Model 

CTX Context Imager 

DL Deep Learning 

DSN Deep Space Network 

ELM Extreme Learning Machine 
FFNN Feed Forward Neural Network 

FN False Negative 

FP False Positive 

GIS Geographical Image System 

GOES Geostationary Operational Environmental 

Satellites 

ILSVRC ImageNet Large Scale Visual Recognition 

Challenge 

IoU Intersection over Union 

KNN k-Nearest Neighbor 

ML Machine Learning 
MRO Mars Reconnaissance Orbiter  

NN Neural Network 

PCR Principal Component Regression 

PIA Planetary Image Archive 

R-CNN Region-based CNN 

ROI Region Of Interest 

SSI Solid State Imager 

SVM Support Vector Machine 

THEMIS Thermal Emission Imaging System 

TN True Positive 

TP True Negative 

USGS United States Geological Survey 
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